0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Improving Effectivity of repetitive Transcranial Magnetic Stimulation in Treatment of Amyotrophic Lateral Sclerosis by Designing New Protocol and Using Machine Learning
نویسندگان :
Ali Abedi
1
Gholamreza Moradi
2
Reza Sarraf Shirazi
3
Mehran Jahed
4
1- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
2- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
3- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
4- دانشگاه صنعتی شریف، تهران، ایران
کلمات کلیدی :
repetitive Transcranial Magnetic Stimulation (rTMS)،Machine Learning،Support Vector Machine (SVM)،Amyotrophic Lateral Sclerosis (ALS)،Electroencephalography (EEG)
چکیده :
Repetitive transcranial magnetic stimulation (rTMS) is an effective and old technique of neuromodulation of neuropsychiatric diseases, however patient responses are variable. Finding effective biomarkers that can predict the response to treatment is a critical step in maximizing the therapeutic efficacy. EEG-based features, when integrated with machine learning, provide a promising strategy to the analyze of response. In this work, we explore the effectiveness of EEG-derived features in identifying rTMS responders and non-responders by means of a Support Vector Machine (SVM) model. This study involved 34 ALS patients recruited from a neurology clinic, divided into two groups: 18 received the new rTMS protocol (NP) and 16 followed the Old protocol (OP). Resting-state EEG was acquired in patients before rTMS. Extracted features by using signal processing methods were: time domain (mean amplitude, variance), frequency domain (band power, peak alpha frequency), nonlinear tests (Hjorth parameters, fractal dimension, Hurst exponent). These features were input into SVM classifier. classification performance of SVM model is high, with overall accuracy of 97.3% when using BP combined with ZCR and FD. The ROC curve, showed excellent discrimination between responders and non-responders, with an AUC of 0.99, indicating the stability of the selected features for predicting treatment response. High classification accuracy suggests that machine learning-based EEG analysis might be promising to provide a personalized guideline for rTMS new therapy protocol.
لیست مقالات
لیست مقالات بایگانی شده
Distinct Neurophysiological and Psychological Effects of tVNS and Neurofeedback: Insights for EEG-Guided Neuromodulation
Seyedeh Zeinab Molaeizadeh - Aitor Aritzeta Galan
تحلیل اثر انشعاب فیبر بر خواص مکانیکی تاندون در محل اتصال به استخوان
فاطمه شهماری میکائیل درسی - هادی تقی زاده
Neural Correlates of Reward and Punishment Processing During Gambling-Based Decision-Making: A Simultaneous EEG-fMRI Study
Elias Ebrahimzadeh - Amin Mohammad Mohammadi - Ahmad Hammoud - Lila Rajabion - Hamid Soltanian-Zadeh
طراحی یک سیستم تشخیص سطح لرزش برای بیماران پارکینسون بر اساس توپولوژی سری زمانی لرزش در فضای فاز جغرافیایی
مهدی ذوالفقارزاده کرمانی - سعید رشیدی - اساسه مریم
Fast Reflection-Mode Ultrasound Computed Tomography Versus Conventional Pulse-Echo Technique
Elnaz Rostami Siahpoush - Haniye Fathi - Zahra Kavehvash
Comparative Analysis of Machine Learning and Deep Learning Models for Epileptic Seizure Detection Using the CHB-MIT EEG Dataset
Pouya Taghipour Langrodi - Amirsadra Khodadadi - Mahtab Dastranj - Golnaz Baghdadi
تحلیل تنش روتور توربین گازی به کمک آنالیز حساسیت
پروانه امجدیان
High-throughput microfluidic electroporation system using 3D-hydrodynamic focusing
Zohre Nazemi Dehkordi - Ali Abouei Mehrizi
تحلیل مقایسهای طبقهبندهای یادگیری ماشین بر روی مجموعه داده MNIST
متین نهاوندی
کاربرد EEG در تحلیل واکنشهای مشتریان صنعتی (B2B Neuromarketing)
علی نظیری فیروز سالاری - علی قهرمانی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2