0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Comparative Analysis of Machine Learning and Deep Learning Models for Epileptic Seizure Detection Using the CHB-MIT EEG Dataset
نویسندگان :
Pouya Taghipour Langrodi
1
Amirsadra Khodadadi
2
Mahtab Dastranj
3
Golnaz Baghdadi
4
1- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
2- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
3- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
4- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
کلمات کلیدی :
Epilepsy،Neural Networks،Seizure Detection،Electroencephalography،EEG،Deep Learning،Machine Learning،LSTM
چکیده :
Epilepsy is one of the most common neurological disorders that usually comes with sudden and unpredictable seizures and can severely affect the quality of life of patients. This study aims to design and evaluate different artificial approaches for automated seizure detection using EEG signals from the CHB-MIT dataset. This dataset contains 23 patients suffering from epileptic seizures, including boys and girls aged between 1.2 to 22 years old. Feature extraction was performed across time, frequency, and time-frequency domains. Eight classifiers were implemented in this study, including four machine learning algorithms (SVM, KNN, Decision Tree, and naïve Bayes) and four deep learning architectures (Artificial Neural Network, LSTM, TCN, and Transformer). The results demonstrated that the LSTM and TCN models outperformed other classifiers in detecting the preictal and ictal stages, achieving an accuracy of 96.0% and 97.3% with the sensitivity of 93.5% and 90.5%. Moreover, ANN and Transformer achieved 94.8% and 93.2% accuracy. In contrast, SVM, KNN, DT, and NB represented 93.1%, 92.4%, 81.2%, and 71.9% in accuracy. By preparing a uniform data preparation baseline for the CHB-MIT dataset, this study made an identical comparison between machine learning and deep learning models to propose the best approach for epileptic seizure detection.
لیست مقالات
لیست مقالات بایگانی شده
Investigating the impact of arm swing on lower limb forces using machine learning techniques
Mohammad Reza Seidgar - Hadi Farahani - Mostafa Rostami - Elham Naziri - Sadegh Madadi
ارتباط بین روابط سیاسی و افشای مسئولیت پذیری اجتماعی شرکت
بیتا دلنواز اصغری - مهنا پیرایه جو - نیما رضااوغلی سقا - مائده خاکسار
مطالعه کامپوزیتهای سرامیکی هیدروکسیآپاتیت جهت استفاده در کاشتنیهای استخوانی
میلاد بدر - مهدیه سلطانعلیپور - جعفر خلیلعلافی
Modeling Attention Performance Across Female Reproductive Aging Using Logistic Regression
Zahra Zehtabi - Leila Mehdizadeh Fanid - Pedram Salehpoor - Mahdi Jafari Asl
Diagnostic and Classification Analysis of Retinal Diseases Using OCT Imaging: Focus on Diabetic Retinopathy and Overlap with Other Retinal Disorders
Fatemeh Reyhani - Yashar Amizadeh - Ata Jodeiri
تاثیر استقلال کمیته های حسابرسی بر محتوای اطلاعاتی اعلان سود با نقش کیفیت حاکمیت شرکتی در بورس اوراق بهادار تهران
بهزاد مظفری - هاتف ملازاده - رضا عشقی
Document Clustering Using Deep Pre-trained Language Model Embeddings for Information Retrieval
Mahdi Mohammadiha - Mohammad Hassan Sadreddini - Morteza Mohammadi Zanjireh
بررسی حسابداری مدیریت در اقتصاد دیجیتال
محمدرضا روانشاد
ساخت و انتقال ریزقطرات مغناطیسی در تراشه مایکروفلوئیدیک
نازنین پژوهیده - روزبه عابدینی نسب - مینا صوفی زمرد
نقش هوش مصنوعی و اینترنت اشیا در ارتقاء بهداشت و سلامت
علیرضا پورهوشنگی - علی الماسی حشیانی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1