0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Investigating a Real-time sEMG-based Approaches for Grasping Recognition
نویسندگان :
Monire Ameri Haftador
1
Ali Akbari
2
Mehran Jahed
3
1- دانشگاه صنعتی شریف، تهران، ایران
2- دانشگاه صنعتی شریف، تهران، ایران
3- دانشگاه صنعتی شریف، تهران، ایران
کلمات کلیدی :
Hand Grasping Recognition،Surface Electromyography (sEMG)،Real-Time Systems،Short-time Fourier Transform (STFT)،Convolutional Neural Networks (CNN)
چکیده :
To fully exploit real-time prosthetics and exoskeleton assist devises, human-machine interfaces that can effectively deduce related activity and intent are essential. Surface electromyography (sEMG) provides a well-established non-invasive method for this purpose, yet two key barriers to its broad adoption are attaining recognition latency well below 200ms and preserving accuracy in presence of signal drift. In order to describe an orderly solution to these issues, this paper is a comprehensive assessment of deep learning and conventional algorithms. To establish a comprehensive scheme for targeted gesture, data was meticulously collected from individuals in the biomedical engineering lab. Furthermore, to be able to contrast the proposed method against the already reported work, a well-established publicly available dataset, namely EMG-EPN-612 was utilized. To achieve appropriate real-time accuracy, commonly used classifiers, namely Support Vector Machine (SVM), Random Forest, and Convolutional Neural Networks (CNN) were implemented and compared based on these metrics. Input was rigorously evaluated in three forms, processed signals, handcrafted features, and Short-Time Fourier Transform (STFT) images, in a bid to determine the optimal strategy. Although all these models were shown to support the required real-time constraint, however only the CNN model applied to the STFT inputs achieved the acceptable 92% accuracy on the EMG-EPN-612 dataset, as compared to SVM applied to handcrafted features of 84% accuracy on the recorded dataset. These results provide first-time explanation and trade-off between model complexity and computation cost, and required accuracy. This research provides useful recommendations that further assist in developing more effective, responsive, and accessible hand assist devices and prosthetics.
لیست مقالات
لیست مقالات بایگانی شده
بررسی تأثیر هوش مصنوعی فازی بر رضایت مشتریان خدمات گردشگری سلامت
حسام رضایی - متین رحیمی مرام - مریم مصلح
پیشبینی نمرات دروس دانشگاهی با استفاده از الگوریتم رگرسیون خطی در یادگیری ماشین
سجاد یوسفی - مریم پورنجف - هانیه شیری
کاربرد بلاکچین در اینترنت اشیا :فرصت ها و چالش ها
سجاد یوسفی - مریم پورنجف - فاطمه جستجو - مهلا شریفی
مکان یابی ایستگاههای آتشنشانی با استفاده از الگوریتم بهینهسازی ازدحام ذرات
مهدی عزیزمحمدی - سید محسن میرحسینی - آرش شعبانی
یادگیری عمیق برای ادراک رباتیک مقاوم در محیط های غیرساختارمند
سجاد یوسفی - مریم پورنجف - سمیرا حسینی - سوسن نصرتی - سمیه باقری
مروری برسیاست های مالیاتی ارزهای دیجیتال : چالش ها و فرصت ها در دنیای اقتصاد نوین
نعمت رستمی مازویی - بهروز رادپور
Functionally Graded Material Vertebroplasty Screws: A Finite Element Biomechanical Study
Maryam Rahimi - Mohammad Hosein Zadeh-Posti - َAisan Rafiei - Nima Jamshidi
کاربرد علم داده در مهندسی کامپیوتر : بهینه سازی مصرف انرژی در دیتاسنترها در باب تحلیل داده
مهدی بشیرزاده
Freeze-Dried Oxidized Alginate–Gelatin Scaffold Coated with Reduced Graphene Oxide for Bone Tissue Engineering
Mohsen Aghababaei Tafreshi - Sameereh Hashemi-Najafabadi - Nafiseh Baheiraei
نقش بازاریابی رابطه مند و مدیریت ارتباط با مشتری درتقویت وفاداری مشتری باتاثیر هوش مصنوعی
فرزاد توکلی - معصومه خوانچه سپهر
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2