0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Functionally Graded Material Vertebroplasty Screws: A Finite Element Biomechanical Study
نویسندگان :
Maryam Rahimi
1
Mohammad Hosein Zadeh-Posti
2
َAisan Rafiei
3
Nima Jamshidi
4
1- University of Isfahan
2- University of Guilan
3- Iran University Of Science & Technology
4- University of Isfahan
کلمات کلیدی :
vertebroplasty،functionally graded materials،finite element analysis،hydroxyapatite،biomechanical compatibility
چکیده :
Vertebroplasty is a minimally invasive treatment for osteoporotic vertebral compression fractures (VCFs), yet conventional titanium screws often induce stress shielding and poor load transfer. This study evaluates the biomechanical performance of a novel functionally graded material (FGM) vertebroplasty screw—comprising a Ti-6Al-4V core and hydroxyapatite (HAP) outer layer—using finite element analysis (FEA. A 3D model of the L2 vertebra was reconstructed from CT data and meshed with over 250,000 elements. Two screw types (homogeneous titanium vs. FGM) were simulated under a 300 N axial load. The FGM screw’s radial stiffness gradient was defined by a power-law distribution and implemented via a UMAT subroutine in ABAQUS. Results showed a 14% reduction in peak von Mises stress (12.19 MPa vs. 10.45 MPa) and a 32% decrease in maximum elastic micro-strain (179.9 vs. 121.5) in the FGM screw. Cortical bone stress remained constant (52.20 MPa), while cancellous bone displacement decreased by 36% in the anteroposterior direction (0.02671 mm vs. 0.01702 mm), indicating improved primary stability. Displacement differences between screw types were negligible (<0.00008 mm across all axes), confirming construct integrity. Validation against prior studies showed <10% deviation in stress metrics. The FGM design redistributed internal loads, reduced stress concentrations, and enhanced biomechanical compatibility without compromising cortical integrity. These findings support the potential of graded screws to improve vertebroplasty outcomes by minimizing implant loosening and promoting osseointegration.
لیست مقالات
لیست مقالات بایگانی شده
An Attention-Guided Convolutional Neural Network for Predicting Neoadjuvant Chemotherapy Response in Breast Cancer Patients
Parisa Donyaei - Javad Haddadnia
Transforming Sentiment Analysis with a New LLM Architecture
Hossein Gholamalinejad - Tahoora Ramezanimoghaddam
Postural Responses to Mediolateral Perturbations: Contributions of Surface, Vision, and Cognitive Load
Haniyeh Zahra Budaqi - Ali Mojibi - Saeed Behzadipour
ارائه روشی جدید برای دستیابی به تعادل بار کاری پردازنده ها در محیط توزیع شده گرید محاسباتی با استفاده از الگوریتم ژنتیک
نجمه بلوردی - مریم حسینی گسمونی - فاطمه امامی پناه - مجده فخرآبادی
A Review of Large Language Models in Medicine: Applications, Challenges, and Future Directions
Elham Shameli - Seyed Mohsen Mirhosseini
Application of machine learning approach for prediction the heat capacity of amine
Aboozar Khajeh
نقش هوش مصنوعی در افزایش انطباق مالیاتی و مقررات مالی
مهدی ریسمان گشا
Anastomosis Angle Effects in Beating-Heart Coronary Bypass Grafts: A Fluid–Structure Interaction Study
Mohammad Saleh Kazemi - Nasser Fatouraee - Aisa Rassoli
Optimal Control and Emergence of Kinematic Synergies in Underactuated Biped Locomotion
Mahdi Alipoor - Masoud Yousefi - Farzam Farahmand
انتخاب و ترکیب خودکار وظیفه در یادگیری چند وظیفهای
امیر خاکپور
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2