0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
An Attention-Guided Convolutional Neural Network for Predicting Neoadjuvant Chemotherapy Response in Breast Cancer Patients
نویسندگان :
Parisa Donyaei
1
Javad Haddadnia
2
1- دانشگاه حکیم سبزواری
2- دانشگاه حکیم سبزواری
کلمات کلیدی :
Breast Cancer،Pathological Complete Response،Neoadjuvant Chemotherapy (NAC)،Attention Mechanism،Convolutional Neural Network (CNN)،Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI)،Early Detection of Breast Cancer،Malignant Lesion Diagnosis
چکیده :
Breast cancer remains a leading global health concern among women. Due to factors like tumor adhesion or large volume making some patients initially ineligible for surgery, neoadjuvant chemotherapy (NAC) is commonly used to reduce tumor burden and metastasis before surgical intervention. However, accurately forecasting an individual’s response to NAC remains a major clinical challenge. It critically impacts personalized treatment planning, patient prognosis, and survival rates. It is also essential for minimizing unnecessary treatment-related toxicity. In this study, we propose an Attention-Guided Convolutional Neural Network (AG-CNN) that utilizes Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) data to predict pathological complete response (PCR). Our dual-branch architecture combines global and local feature extraction with attention mechanisms that enhance focus on diagnostically relevant regions, thereby improving predictive accuracy. The model achieved a prediction accuracy of 90.76%, a sensitivity of 96.66%, and a specificity of 89.95%. The model outperformed baseline methods lacking attention mechanisms, demonstrating the significant advantage of integrating attention in clinical outcome prediction. These findings underscore the significant clinical utility of attention-guided learning frameworks in enhancing the precision of treatment response predictions, ultimately supporting more informed, personalized therapeutic decisions and improving patient outcomes in breast cancer care.
لیست مقالات
لیست مقالات بایگانی شده
Toward Precision Psychiatry: Differentiating Depression and Psychosis Using EEG-Based Machine Learning Models
Vahid Asayesh - Mehdi Dehghani - Majid Torabi - Sepideh Akhtari-Khosroshahi - Maedeh Akhtari-Khosroshahi - Sebelan Daneshvar
Quantum Computing for AI: Current Status and Future Roadmap
Nayereh Majd
Acoustofluidic Separation of Circulating Tumor Cells from Semen via Induced Microvortices
Ashkan Behrouzi - Sheyda Nadi - Zahra Saeidpour - Majid Badieirostami
Depression detection based on EEG signal analysis utilizing Inter-hemispheric Asymmetry and Correlation Dimension assessment
Amirreza Ahmadi - Saeid Yarmohammdi - Ali Zeraatkar - Reza Rostami
Binary Discrete Emotion Detection with Peripheral and Fp1-Fp2 EEG Signals on PEEFS Dataset
Fatemeh Shalchizadeh - Sina Shamekhi - Mahdi Jafari Asl
توسعه پیشرفته بازیهای ویدیویی با بهرهگیری از هوش مصنوعی و مدلهای زبانی بزرگ: از چارچوبهای چندعاملی تا بصریسازی هوشمند
سجاد یوسفی - مریم پورنجف - نیلوفر منفردنژاد
مروری بر روشهای هوشمند مدیریت فرسودگی لینکهای عمودی در شبکههای روی تراشه سهبعدی
سید محمد آذرشین - رضا فرشیدی - امین مهرانزاده
EJES: A Diverse Estimator Bank Framework for High-Resolution EEG/MEG Source Localization
Reza Khajehsarvi - Sayed Mahmoud Sakhaei - Sadegh Jamshidpour
Anastomosis Angle Effects in Beating-Heart Coronary Bypass Grafts: A Fluid–Structure Interaction Study
Mohammad Saleh Kazemi - Nasser Fatouraee - Aisa Rassoli
تأثیر گردش سیاسی بر رفتار گزارشگری حسابرس با تأکید بر اندازه موسسه حسابرسی
فریور بلندنظر - مرتضی خانلاری
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1