0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Improved Metric for Classification of Nearby Reaching Targets: A Distance-Weighted Accuracy Approach
نویسندگان :
Zahra Dayani
1
Ali Maleki
2
Ali Fallah
3
1- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
2- دانشگاه سمنان
3- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
کلمات کلیدی :
reaching target classification،upper-limb prosthesis control،spatially weighted accuracy،performance evaluation metrics،misclassification cost،motor intention decoding
چکیده :
Accurate classification of reaching targets is critical for upper-limb prosthesis control, rehabilitation robotics, and human-robot interaction. Traditional classification metrics assume uniform misclassification costs, ignoring the spatial relationships between targets. This overlooks significant performance degradation: misclassifications in safety-critical zones (e.g., near obstacles or humans) or those impairing functional outcomes (e.g., failing to grasp a cup) can be far more detrimental than spatially adjacent misclassifications—despite equivalent cost in standard metrics—leading to elevated user workload or complete task failure. To address this, we propose a spatially informed weighted accuracy metric. Misclassification costs are assigned based on the normalized Euclidean distance between the intended target and the misclassified position, penalizing distant errors more heavily than proximal ones. We demonstrate the utility of this metric first using synthetic confusion matrices achieving identical standard accuracy but exhibiting distinct spatial error patterns (far, near and random misclassification error patterns). We then apply it to a real-world reaching target prediction task, comparing two classifiers (Quadratic Kernel SVM vs. Gaussian Kernel SVM) with equal standard accuracy (63%). The proposed metric effectively discriminates classifier performance by imposing higher penalties on distant misclassifications (86.3% for Quadratic Kernel SVM vs. 85.5% Gaussian Kernel SVM), revealing significant differences masked by standard accuracy. Crucially, the metric explicitly normalizes against the worst-case misclassification cost inherent to the target layout, providing a spatially aware assessment of classification performance essential for real-world deployment.
لیست مقالات
لیست مقالات بایگانی شده
Adaptive neuro-fuzzy inference system (ANFIS) for prediction the gibbs energy of formation
Aboozar Khajeh
تحلیل رابطهی مولفههای هوش هیجانی و عملکرد ریاضی در دانشآموزان تیزهوش
سید محمد امین خاتمی
بررسی تأثیر ریسک اطلاعات مالی و بندهای تعدیلی حسابرسی بر وجوه هیئتمدیره مشترک در شرکتهای پذیرفته شده در بورس اوراق بهادار تهران
حمیدرضا عزیزی - عرفان تخستین حلم
Optimization of AODV Routing Protocol in Ad Hoc Networks Using Particle Swarm Optimization Algorithm
Jalileh Alboshokeh - Touraj Mohammadpour
حسابداری توسعه پایدار با رویکرد اقتصاد هوشمند
مهدی زینالی - علیرضا صابر - رامین فتح الله زاده دیزجی - احمد حسن پور
Grating Lobe Suppression in Sparse Coprime Array Ultrasound Imaging by Null Alignment
Mina Ezati - Vahid AminNilii - Zahra Kavehvash
Antimicrobial and Bioactivity Evaluation of Laser-Modified Biodegradable Magnesium Alloy Coated with Chitosan–Graphene Oxide
Seyed Alireza Ensaniat - Ali Safary - Farid Naeimi - Hamid Reza Bakhsheshi Rad - Monireh Ganjali
Assessing the Risk of Musculoskeletal Injuries of Workers at the Warehousing Workstation of Iran Tire Company
Mahshad Nazari Jeirani - Amirhossein Mohammadzadeh - Seyedeh Shokouh Azam Mirdamadi - Mohadeseh Sadat Shahangian - Navid Arjmand
بررسی رابطه بین عدم تقارن اطلاعاتی و هزینه حقوق صاحبان سهام با فراوانی گزارشگری مالی
رعنا شهدآور - سولماز سعیدیان - رعنا پورفرج
“Analyzing the Impact of Emerging Technologies on Supply Chain Sustainability: A Case Study of the Food Supply Chain in the Post-COVID Era”
Mahdi Rezaei - Salman Vali mohammadi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1