0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Multiclass ICU Length-of-Stay Prediction Using Tree-Based Machine Learning Techniques
نویسندگان :
Mahyar Mohammadian
1
Somayeh Afrasiabi
2
1- School of Electrical and Computer Engineering, Shiraz University
2- School of Electrical and Computer Engineering, Shiraz University
کلمات کلیدی :
multi-class prediction،ICU length of stay،CatBoost،MIMIC III،Area Under Curve
چکیده :
Accurate prediction of intensive care unit (ICU) length-of-stay (LOS) is essential for patient management and resource planning. This study compares four tree-based machine learning models—Random Forest, XGBoost, LightGBM, and CatBoost—for multiclass LOS prediction using the MIMIC-III database. A total of 42,306 ICU stays were processed with 17 physiologic variables and discretized into 10 ordered LOS classes. Models were evaluated using quadratic-weighted Cohen’s kappa (κ) and Mean Absolute Deviation (MAD) to capture ordinal agreement and temporal accuracy. CatBoost achieved the best performance (κ = 0.444, MAD = 124.66 hours), effectively predicting both short- and longstay patients, which are operationally critical. XGBoost and Random Forest provided intermediate results, while LightGBM showed lower temporal precision (MAD = 164.19 hours). The results demonstrate that CatBoost’s ordered boosting strategy and native handling of categorical variables enable robust, interpretable predictions suitable for clinical and operational decision-making. These findings highlight the potential of tree-based machine learning to transform ICU LOS prediction from a retrospective metric into a proactive, reliable and interpretable tool for optimizing patient flow, resource allocation and decision-making. The study provides a foundation for future improvements using richer time-series data, multimodal inputs, and multicenter validation.
لیست مقالات
لیست مقالات بایگانی شده
Evaluation and Comparison of Columnar Databases Cassandra, Kudu, HBase, Google Bigtable, MariaDB, and Greenplum for Fast and Accurate Data Processing
Sareh Gorgbandi - Nafiseh Osati
3D Printing of Novel Bioactive Polycaprolactone Nanocomposites for Prospective Osteoporotic Bone Defect Engineering
Fateme Fathi - Hengameh Zolala - Farhad Esmailzadeh - Shohreh Mashyekhan - Irinia Kurzina
تاثیر قدرت مدیر عامل بر کیفیت گزارشگری مالی
یعقوب پور کریم - میلاد حبیب اللهی - ابوالفضل بخشی قیسناب
ECG-Based Detection of Acute Myocardial Infarction Using a Wrist-Worn Device: a Machine Learning Approach
Tania Hossein Khani - Amir hossein Tajarrod - Asghar Zarei - Mousa Shamsi
Electrospun Chitosan-Gelatin/ZIF‑8 Nanofibers Scaffolds for Enhanced Wound Healing
Maryam Nosrati hashi - Maryam Tajabadi - Fateme Mirzajani - Alireza Khavandi
ارائه مدل رتبه بندی مشتریان اعتباری بانکی با استفاده از داده کاوی و منطق فازی :مطالعه موردی بانک خصوصی در ایران
محمد صالح کتابی
بررسی سه روش شبکه های عصبی بازمانده ، شبکه عصبی کانولوشنی و مدل های حافظه کوتاه مدت در شناسایی اخبار جعلی
بهاره هاشم زاده - مجید عبدالرزاق نژاد
Argeted Cancer Treatment Through Tissue Engineering and Biomaterial-Based Drug Delivery Systems:
Laleh Etemad-Ghazani - Mina Saddi-Khelejan - Mahdi Hasanpour
Exponential sliding mode controller to track the human upper limb during Topspin Forehand in Table Tennis
Erfan Sedaghat - Seyyed Arash Haghpanah
Freeze-Dried Oxidized Alginate–Gelatin Scaffold Coated with Reduced Graphene Oxide for Bone Tissue Engineering
Mohsen Aghababaei Tafreshi - Sameereh Hashemi-Najafabadi - Nafiseh Baheiraei
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1