0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Multiclass ICU Length-of-Stay Prediction Using Tree-Based Machine Learning Techniques
نویسندگان :
Mahyar Mohammadian
1
Somayeh Afrasiabi
2
1- School of Electrical and Computer Engineering, Shiraz University
2- School of Electrical and Computer Engineering, Shiraz University
کلمات کلیدی :
multi-class prediction،ICU length of stay،CatBoost،MIMIC III،Area Under Curve
چکیده :
Accurate prediction of intensive care unit (ICU) length-of-stay (LOS) is essential for patient management and resource planning. This study compares four tree-based machine learning models—Random Forest, XGBoost, LightGBM, and CatBoost—for multiclass LOS prediction using the MIMIC-III database. A total of 42,306 ICU stays were processed with 17 physiologic variables and discretized into 10 ordered LOS classes. Models were evaluated using quadratic-weighted Cohen’s kappa (κ) and Mean Absolute Deviation (MAD) to capture ordinal agreement and temporal accuracy. CatBoost achieved the best performance (κ = 0.444, MAD = 124.66 hours), effectively predicting both short- and longstay patients, which are operationally critical. XGBoost and Random Forest provided intermediate results, while LightGBM showed lower temporal precision (MAD = 164.19 hours). The results demonstrate that CatBoost’s ordered boosting strategy and native handling of categorical variables enable robust, interpretable predictions suitable for clinical and operational decision-making. These findings highlight the potential of tree-based machine learning to transform ICU LOS prediction from a retrospective metric into a proactive, reliable and interpretable tool for optimizing patient flow, resource allocation and decision-making. The study provides a foundation for future improvements using richer time-series data, multimodal inputs, and multicenter validation.
لیست مقالات
لیست مقالات بایگانی شده
بررسی تأثیر تعهد استراتژیک و همکاری زنجیره تأمین بر عملکرد عملیاتی و نوآوری
حسن فارسیجانی - ملیکا دهقانی اشکذری
Development of an Explainable Random Forest-Based Algorithm for EEG-Based Sleep–Wake Classification Toward Sleep Apnea Detection
Pargol Sharifi - Mohammad Fakharzadeh
پیش بینی پیک بار تهران به کمک الگورتیم های یادگیری ماشین ترکیبی
مسعود ابراهیمی کاشف - حسین اقبالی - محمدعلی اقبالی
Goniometry and Electromyography Data Analysis for Knee Health Diagnosis using Machine Learning
Mohammad-Reza Sayyed Noorani - Zahra Mahmoudi Anzabi - Sara Sharifi
EEG Graph Construction: A Comparative Analysis for Classification Application
Kiana Kalantari - Mohammad Bagher Shamsollahi
A Comprehensive Architecture for Smart Hospitals: Leveraging IoT, AI, and Data Science
Jafar Abdollahi - Laya Mahmoudi - Babak Nouri-Moghaddam
Influence of artificial intelligence in the mining industry and its role in the economic development
Parinesa Moshefi
Alterations of Brain Activation Maps in Adults with ADHD During Risk-Related Decision-Making Evidence from the Balloon Analogue Risk Task
Bahar Kermani - Mahdi Mirzaee Barzegar - Alireza Shirazinodeh
بهرهگیری از هوش مصنوعی و یادگیری عمیق در پیشبینی خطا و عیبیابی تجهیزات صنعتی
سحر پاسیار - سید محمدتقی موسوی قهفرخی - نسرین اشرفی باباگنجه - صبا شاکر
تأثیر تنوع در ترکیب اعضای هیئت مدیره بر کارایی سرمایه گذاری
محسن بزرگی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2