0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Lightweight 3D U-Net for Robust Liver Segmentation in Multi-Institutional CT Datasets
نویسندگان :
Seyyed Mohammad Hosseini
1
Faeze Salahshour
2
Ahmadreza Sebzari
3
Masoomeh Safaei
4
Hossein Ghadiri Harvani
5
1- دانشگاه علوم پزشکی تهران
2- دانشگاه علوم پزشکی تهران
3- دانشگاه علوم پزشکی بیرجند
4- دانشگاه علوم پزشکی تهران
5- دانشگاه علوم پزشکی تهران
کلمات کلیدی :
Liver،Segmentation،Computed Tomography (CT)،3D U-Net
چکیده :
A computed tomography (CT) image of the liver and surrounding structures provides detailed cross-sectional images, which highlight anatomical variations and pathological conditions. The combination of CT and U-Net networks is a well-known method for liver segmentation, which is vital for accurate diagnosis, treatment planning, and surgical intervention. However, the high computational demands of recent 3D U-Net–based architectures prevent their deployment in resource-constrained environments. A lightweight 3D U-Net optimized for liver segmentation is proposed in this study, maintaining high performance while reducing computational complexity drastically. Several institutional datasets of 250 abdominal CT volumes were compiled from public benchmarks (LiTS, IRCAD) and local clinical sources, encompassing anatomical, pathological, and protocol variations. An isotropic resampling procedure was used to resample, normalize intensity, standardize crops, and augment data on-the-fly. With fewer than two million parameters, the proposed model retains the encoder-decoder and skip-connection designs of conventional 3D U-Nets. An evaluation of a 30% independent set of tests achieved Dice similarity coefficients of 0.85 ± 0.02, intersect-over-unions of 0.82 ± 0.03, inference times under 0.7 s and GPU memory consumption below 2 GB. The performance was consistent across public and local datasets, highlighting the importance of heterogeneous training data. Even though the proposed model is slightly less accurate than heavy architecture, it delivers near-real-time segmentation with minimal resource consumption, so it can be integrated into clinical workflows, especially in environments where computational resources are limited.
لیست مقالات
لیست مقالات بایگانی شده
Fast Reflection-Mode Ultrasound Computed Tomography Versus Conventional Pulse-Echo Technique
Elnaz Rostami Siahpoush - Haniye Fathi - Zahra Kavehvash
هوشمندسازی زنجیره تأمین با بهرهگیری از الگوریتمهای هوش مصنوعی
غلامرضا جمالی - محمدهادی نامور
Hybrid Active Learning–Driven Subset Dataset Selection Enables Near-Optimal Cardiac X-Ray Segmentation with Less Training Data
Sayna Jamaati - Masoud Noroozi - Hossein Arabi - Alireza Karimian
تأثیر تنوع در ترکیب اعضای هیئت مدیره بر کارایی سرمایه گذاری
محسن بزرگی
Ensemble Learning–Based Surrogate Models for Non-Invasive Estimation of Corneal Mechanical Properties
Seyed Sadjad Abedi Shahri - Mitra Baradari - Iman Zoljanahi Oskui
Accelerated Diffusion-Weighted Imaging via Diffusion Gradient Alternation in Radial k-Space Sampling
Fateme Hoseini Rashkani - Abbas Nasiraei Moghaddam
تهیه نانوحامل ژلاتین گالاکتوزیله شده با هدف کاربرد در دارورسانی هدفمند به بافت کبد سرطانی
مائده بخشی پور رشته رودی - امیرحسین شریفی - مریم رجب زاده - علی برادر خوش فطرت
شبیه سازی عددی انقباض بطن راست قلب جنین انسان به روش تعامل سیال و جامد
سیده کیمیا مرتضوی فارسانی - هانیه نیرومند اسکوئی - بهروز جعفرزاده - محمد حسن فردوسی
Mental Workload Classification using Bidirectional LSTM Networks with Multi-Feature Fusion
Fatemeh Farokhshad - Sepideh Bahri Hampa - Amirhesam Ghasri - Sara Bagherzadeh
Comparative Analysis of Time-Frequency Representations for Pediatric Respiratory Sound Classification Using Deep Learning
Ghazaleh Shiri - Hanieh Bahrami - Alireza Fallahi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1