0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Comparative Assessment of U-Net and Pix2Pix for Applying Direct Attenuation Correction in the Image Domain in 68Ga-PSMA PET/CT Imaging
نویسندگان :
Negin Hamidiyan
1
Hadi Taleshi Ahangari
2
Pardis Ghafarian
3
Hossein Arabi
4
Mohammad Reza Ay
5
1- دانشگاه علوم پزشکی سمنان
2- دانشگاه علوم پزشکی سمنان
3- دانشگاه علوم پزشکی شهید بهشتی
4- Geneva University Hospital
5- دانشگاه علوم پزشکی تهران
کلمات کلیدی :
Attenuation Correction،PET/CT،PSMA،Deep Learning،U-Net،Pix2Pix
چکیده :
Attenuation correction (AC) is crucial for achieving accurate quantitative positron emission tomography (PET) imaging; however, it remains a challenge in dedicated PET systems that lack simultaneous computed tomography (CT) imaging. In recent years, deep learning (DL) approaches have been explored for this purpose, though direct comparisons between models are still limited. In this study, we directly compared the performance of two widely applied DL architectures, U-Net and Pix2Pix, for direct AC of whole-body 68Ga-PSMA PET images using the same set of 95 patient data sets. For each data set, CT-based attenuation-corrected PET (PET-CTAC) was used as the reference. Quantitative evaluation included mean error (ME) of mean of standardized uptake value (SUVmean), normalized root mean square error (NRMSE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR). Both U-Net and Pix2Pix generated PET images of comparable quality to those from PET-CTAC, but Pix2Pix generally showed better quantitative metrics. Specifically, U-Net achieved ME, NRMSE, SSIM, and PSNR values of 0.037 ± 0.02, 0.006 ± 0.005, 12.88 ± 2.73, and 0.98 ± 0.14, respectively, whereas Pix2Pix achieved 0.015 ± 0.015, 0.005 ± 0.004, 13.93 ± 2.48, and 0.99 ± 0.004. Statistical analysis, using paired t-tests or Wilcoxon signed-rank tests depending on data normality, demonstrated that Pix2Pix produced SUV estimates closer to those of PET-CTAC, with lower bias and variability than U-Net. In conclusion, both DL models enabled direct AC of whole-body 68Ga-PSMA PET, but Pix2Pix provided more accurate and reliable AC when the two models were directly compared, indicating Pix2Pix is the stronger candidate for clinical use in dedicated PET systems without CT imaging.
لیست مقالات
لیست مقالات بایگانی شده
Analyzing Blood Glucose Levels with Near Infra-Red Spectroscopy and Chemometric Multivariate Methods
Hadi Barati - Arian Mousavi Madani - Soheil Moradi - Mohammad Mohsen Ebrahimi Seyghalan - Mehdi Fardmanesh
Electrochemical Biosensors Based on Polyaniline Nanostructures: An Analysis of Advances, Performance Challenges, and the Outlook for Smart Systems
Nasim Kharazminezhad - Ramez Pourahmad
Benchmarking nnU-Net vs. Custom 3D U-Net for Kidney Tumor Segmentation: A Controlled Study on KiTS19 Dataset
Ariya Soleimany - Masoud Noroozi - Mohammad Saber Azimi - Alireza Karimian - Jafar Majidpour - Hossein Arabi
Neural Correlates of Reward and Punishment Processing During Gambling-Based Decision-Making: A Simultaneous EEG-fMRI Study
Elias Ebrahimzadeh - Amin Mohammad Mohammadi - Ahmad Hammoud - Lila Rajabion - Hamid Soltanian-Zadeh
بررسی سه روش شبکه های عصبی بازمانده ، شبکه عصبی کانولوشنی و مدل های حافظه کوتاه مدت در شناسایی اخبار جعلی
بهاره هاشم زاده - مجید عبدالرزاق نژاد
مخابرات و اینترنت اشیا: زیرساختهای نوین برای اقتصاد دیجیتال
سجاد یوسفی - مریم پورنجف - آمنه احمدی - شکوفه گرینی - حسنا هاشم بیگی
Fuzzy Estimator of the Soleus Activation during Heel-raising Motion using OpenSim–MATLAB
Mohammad-Reza Sayyed Noorani - Roghaiyeh Ahmadian Sarand - Nakisa Farshforoush
جایگاه فنآوریهای مبتنی بر هوش مصنوعی در برنامه ریزی آموزشی با تاکید بر اهداف برنامه ششم توسعه
سونیا پیشکار - ثریا غلامحسین پور انوری
Effect of ph changes on thermal and mechanical properties of polyacrylamide hydrogel using molecular dynamics simulation
Narges Karimzadeh Dehkordi
Smart Injectable Hydrogels: From In-Situ Gelation to On-Demand Drug Release in Regenerative Medicine
Leyla Mirzaei - Adnan Alizadeh Naeini - Neda Sadat Miragha Babaei
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1