0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Robust Binary Differentiation of ALL vs. AML Using Deep Graph Convolutions
نویسندگان :
Mahsan Rahmani
1
Saeed Meshgini
2
Reza Afrouzian
3
1- Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran Rahmani@tabrizu.ac.ir
2- Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
3- Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
کلمات کلیدی :
Acute leukemia.،ALL;،AML;،graph convolutional networks;،microscopic smear analysis;،robust classification
چکیده :
Early triage of acute leukemia remains challenging due to subtle morphologic differences between lymphoid and myeloid blasts and the time-consuming nature of manual review. We present an end-to-end pipeline that integrates graph construction with a tailored deep convolutional architecture for automatic differentiation between acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). The dataset comprises smear images collected from 44 patients; images are resized and normalized, class imbalance is mitigated via GAN-based augmentation, and superpixel-level regions are used to build an adjacency graph whose node features summarize local intensities. A six-layer graph convolutional backbone with batch normalization, dropout, and a terminal softmax performs binary classification. Under a 70/20/10 split with 5-fold cross-validation, the model achieves strong and consistent performance (Accuracy 99.4%, Specificity 97.3%, Kappa 0.85), and remains robust when synthetic white noise is added (accuracy >90% at SNR = 0 dB). Comparative analyses against standard CNN/ResNet/VGG baselines indicate superior accuracy and stability, supporting the efficiency of graph- enhanced representations for this task. These results suggest a practical tool to support pathologists in rapid screening and referral. Future work will extend the framework to multi-class settings (including CML/CLL) and explore alternative augmentation strategies beyond GANs.
لیست مقالات
لیست مقالات بایگانی شده
تاثیر پیچیدگی وظیفه بر عملکرد حسابرسان با تأکید بر جنبه های فردی و معنوی
حیدر محمدزاده سالطه - هانیه کریم زاده
طبقه بندی دقیق تومورهای مغزی با رویکرد ترکیبی EfficientNetB4 و ترنسفورمر بینایی
الهه الهی پرست باقری - افشین ابراهیمی
ارزیابی تأثیر حسابداری مدیریت بر افزایش سرمایه فکری سازمانهای دولتی کشور
حسین بوذری
Dynamic Classification of Resting-State EEG Using Adaptive Functional Connectivity in Mild Traumatic Brain Injury
Farzaneh Manzari - Peyvand Ghaderyan
تاثیر بعد استراتژی مالی وبعد پاسخگویی برکیفیت خدمات درک شده و خشنودی مشتریان )مورد مطالعه : فروشگاه افق کوروش(
حسین بوذری
طراحی مدل هوشمند در جهت رتبهبندی شعب شرکتهای بیمه
مسعود سبزچی دهخوارقانی - میترا زابلی پیله رود
شناسایی قدرت پسورد با استفاده از روشهای یادگیری ماشین دسته جمعی
مهناز درودی - سیدحسن مرتضوی زارچ - فاطمه زارع مهرجردی - محسن سرداری زارچی
Leveraging Normal White Matter Hyperintensity Context for Enhanced Pathological Segmentation via Multi-Class Deep Learning
Mahdi Bashiri Bawil - Mousa Shamsi - Ali Fahmi Jafargholkhanloo - Abolhassan Shakeri Bavil
Graph Convolutional Network–Based Surrogate Modeling for MRI-EEG Connectivity Analysis
Arshia Rezaei - Bahareh Abbaszadeh
کاربردهای الگوریتم فراابتکاری ماهی پاککننده در اینترنت اشیا
زهرا ترتیبیان - علی اکبر نقابی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1