0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Attentive Temporal Fusion Network (ATFNet) for Multi-frame Coronary Vessel Segmentation in X-ray Angiography
Authors :
Pouya Babaei
1
Farshad Almasganj
2
1- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
2- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
Keywords :
Attentive Temporal Fusion Network،Coronary vessel segmentation،X-ray coronary angiography،Spatial Attention Temporal Squeeze،Structured sparsity loss
Abstract :
X-ray coronary angiography remains the clinical gold standard for visualizing coronary lumen but presents major challenges for automated analysis: low vessel contrast, overlapping anatomy, catheter occlusion, breathing/heartbeat motion and extremely thin branching vessels that fracture easily in segmentation maps. To address these issues we propose ATFNet (Attentive Temporal Fusion Network), a compact UNet++–inspired architecture that ingests short temporal stacks (four successive frames) and fuses motion and appearance cues into a single 2-D prediction. Key components are (i) SATS (Spatial Attention Temporal Squeeze), a per-frame directional spatial attention and learned temporal fusion that compresses four frames into a channel-recalibrated 2-D representation; (ii) SE_ResBlock3D/2D units that provide residual learning with squeeze-and-excitation attention in the 3D encoder and 2D decoder; (iii) DSF (Deep Supervision Fusion), which combines coarse (spatial merge) and attentive (channel-reweighted) fine kernels from multiple decoder depths into one robust output; and (iv) a topology-aware StructuredSparsityLoss (BCE–Dice base + multi-scale tree norm) together with the Lion optimizer and scheduler to stabilise and accelerate training on modest clinical data. On a manually annotated clinical XCA set, ATFNet produces noticeably more continuous, less fragmented vessel masks and improved temporal stability compared with single-frame baselines; ablation studies confirm that SATS, DSF, SE-Res blocks and the Lion optimizer each contribute to the observed gains. These results indicate that compact, attention-augmented temporal fusion, combined with a tree-aware loss, can substantially improve coronary vessel continuity and segmentation fidelity in angiographic sequences.
Papers List
List of archived papers
Optimization of an Integrated Filter Photometric system and a Centrifugal Microfluidic System for Biochemical Analysis
Bahareh Mohammadi Jobani - Amin Dehghan - Zahra Shahsavari - Esmail Pishbin
خودشیفتگی و تصمیم گیری مدیران: بررسی بیست سال ادبیات حسابداری
رعنا شهدآور - فاطمه ذوالفقاری - فاطمه افروزیان
تاثیر عدم تقارن اطلاعاتی بر ارتباط بین متنوع سازی شرکتی و مالی سازی شرکت
احمد محمدی - سعید سودی - سونیا کیوان بد
مطالعه کامپوزیتهای سرامیکی هیدروکسیآپاتیت جهت استفاده در کاشتنیهای استخوانی
میلاد بدر - مهدیه سلطانعلیپور - جعفر خلیلعلافی
Conductive Hydrogels in Biomedical Engineering: Current Status and Challenges
Elham Amiraslani - Zahra Mohammadi
پیشبینی نمرات دروس دانشگاهی با استفاده از الگوریتم رگرسیون خطی در یادگیری ماشین
سجاد یوسفی - مریم پورنجف - هانیه شیری
HEALTH: Hyperbolic Embedding and Acoustic-based Learning for Topological Hierarchies in Parkinson’s Disease
Saghar Shafaati - S. Hossein Erfani
ارتباط بین عملکرد پایداری و سرمایه گذاری بیشتر و کمتر از حد
سعید انور خطیبی - علی زارع بهتاشی
A Telemedicine Approach to Therapist-Free VR Exposure Therapy for Acrophobia: A pilot study
Arya Gholipoor Hanizi - Samaneh Minakhani - Poorya Gholipoor
شناسایی نقش تحولآفرین هوش مصنوعی بر خودکارسازی فرآیندهای حسابداری و سادهسازی گزارشهای مالی
صدیقه بخشی زاده باغستانی
more
Samin Hamayesh - Version 42.4.1