0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
An Automatic Pipeline for Simultaneous EEG-fMRI Artifact-removal (SEFA)
Authors :
Farid Hosseinzadeh
1
Amin Mohammad Mohammadi
2
Mehrdad Anvarifard
3
ُSasan Keshavarz
4
Elias Ebrahimzadeh
5
Hamid Soltanian-Zadeh
6
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
5- دانشگاه تهران
6- دانشگاه تهران
Keywords :
Simultaneous EEG-fMRI،EEG،preprocessing،artifact removal،automation،pipeline،ٍَُّSEFA
Abstract :
Simultaneous EEG–fMRI provides complementary temporal and spatial information about brain function, but its utility is hindered by severe scanner-induced artifacts such as gradient and ballistocardiographic (BCG) noise. Manual artifact correction is effective but labor-intensive, inconsistent, and difficult to scale. We introduce SEFA, a fully automated two-stage preprocessing pipeline for simultaneous EEG–fMRI that integrates MRI-specific artifact correction (average artifact subtraction, optimal basis set, and PCA/OBS modeling) with state-of-the-art EEG cleaning techniques adapted from a previous popular standard EEG preprocessing pipeline, HAPPE, including automated independent component classification (MARA and ICLabel), bad-channel detection, multitaper regression for line noise, and segment-level quality control. Validation against manually corrected datasets from a reward-based decision-making task demonstrated that SEFA achieves near-perfect equivalence with expert preprocessing. Event-related potentials (ERPs) from both approaches exhibited indistinguishable morphology, latency, and amplitude, with mean channel-wise correlations of r = 0.91 ± 0.14, and 72% of electrodes exceeding r > 0.90. Signal-to-noise ratio (SNR) improved from ~0.8 dB in raw data to 6.7 dB with SEFA, matching manual performance (6.9 dB). Statistical testing confirmed no significant differences in ERP amplitude or latency between automated and manual methods (all p > 0.1). By reducing operator bias and cutting processing time from hours to minutes, SEFA enables reproducible, scalable, and clinically feasible preprocessing of simultaneous EEG–fMRI data.
Papers List
List of archived papers
بررسی چالش ها و راهکارهای مدیریت منابع در شبکه های بی سیم اینترنت اشیا با تمرکز بر محاسبات مه و لبه
سعیده نادری - سید حمید غفوری مهدی آباد
Fast Reflection-Mode Ultrasound Computed Tomography Versus Conventional Pulse-Echo Technique
Elnaz Rostami Siahpoush - Haniye Fathi - Zahra Kavehvash
Natural Language Processing and Speech Processing Integration: Toward A Point-of-Care Framework for Early Detection of Alzheimer’s Disease
Aslan Modir - Fatemeh Shalchizadeh - Armin Ghasimi - Sina Shamekhi
DMAEMA-based photocrosslinkable hydrogels with injectable capabilities for smart drug delivery systems in implant infections
Fatemeh Haj Sadeghi - Vahid Haddadi Asl - Hanie Ahmadi
طراحی مدل توزیع ناب - کلاس جهانی در صنعت برق ایران
رکسانا رادمنشی
Neural Encoding of Outcome Magnitude: Evidence from fMRI
Amin Mohammad Mohammadi - Shaghayegh Mahmoudi - Narjes Amin - Farid Hosseinzadeh - Elias Ebrahimzadeh - Hamid Soltanian-Zadeh
افزایش پیش بینی بازار سهام از طریق هوش مصنوعی
سهیلا صمدی گلوجه - اسما حیدری پناه - زهرا علی لیواری - فاطمه خالقیان
شبیه سازی افزایش نفوذ دارو در لوله مویرگی با غشا نفوذپذیر به کمک اثر نانوذرات مغناطیسی
پریماه سلیمی - هامون پورمیرزاآقا - منصور امیری دوگاهه - علی وظیفه دوست صالح - سیده سوده جهانی
نقش هوش مصنوعی در تشخیص و پیشگیری از تقلب در خدمات مالی
مهدی محمدی امین - مهدی فرساد - هادی محمدی امین
طراحی و توسعه دستیار هوشمند مشاوره پزشکان در دانشگاه علوم پزشکی همدان
حبیب اله تحسینی - جواد کشوری کامران
more
Samin Hamayesh - Version 42.5.2