0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
An Automatic Pipeline for Simultaneous EEG-fMRI Artifact-removal (SEFA)
Authors :
Farid Hosseinzadeh
1
Amin Mohammad Mohammadi
2
Mehrdad Anvarifard
3
ُSasan Keshavarz
4
Elias Ebrahimzadeh
5
Hamid Soltanian-Zadeh
6
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
5- دانشگاه تهران
6- دانشگاه تهران
Keywords :
Simultaneous EEG-fMRI،EEG،preprocessing،artifact removal،automation،pipeline،ٍَُّSEFA
Abstract :
Simultaneous EEG–fMRI provides complementary temporal and spatial information about brain function, but its utility is hindered by severe scanner-induced artifacts such as gradient and ballistocardiographic (BCG) noise. Manual artifact correction is effective but labor-intensive, inconsistent, and difficult to scale. We introduce SEFA, a fully automated two-stage preprocessing pipeline for simultaneous EEG–fMRI that integrates MRI-specific artifact correction (average artifact subtraction, optimal basis set, and PCA/OBS modeling) with state-of-the-art EEG cleaning techniques adapted from a previous popular standard EEG preprocessing pipeline, HAPPE, including automated independent component classification (MARA and ICLabel), bad-channel detection, multitaper regression for line noise, and segment-level quality control. Validation against manually corrected datasets from a reward-based decision-making task demonstrated that SEFA achieves near-perfect equivalence with expert preprocessing. Event-related potentials (ERPs) from both approaches exhibited indistinguishable morphology, latency, and amplitude, with mean channel-wise correlations of r = 0.91 ± 0.14, and 72% of electrodes exceeding r > 0.90. Signal-to-noise ratio (SNR) improved from ~0.8 dB in raw data to 6.7 dB with SEFA, matching manual performance (6.9 dB). Statistical testing confirmed no significant differences in ERP amplitude or latency between automated and manual methods (all p > 0.1). By reducing operator bias and cutting processing time from hours to minutes, SEFA enables reproducible, scalable, and clinically feasible preprocessing of simultaneous EEG–fMRI data.
Papers List
List of archived papers
هوش مصنوعی و تحول مدیریت استعداد: گذر از رویکرد های سنتی به عصر تکنولوژی
مهسا کریمی دستنائی - مهدی ندری
مروری برمفاهیم دانش هیئت مدیره و فرآیندهای داخلی هیئت مدیره در حاکمیت شرکتی
زهرا سلیمانی زاده - زهره عارف منش
Document Clustering Using Deep Pre-trained Language Model Embeddings for Information Retrieval
Mahdi Mohammadiha - Mohammad Hassan Sadreddini - Morteza Mohammadi Zanjireh
Super-Resolution Generative Adversarial Network for Photothermal Optical Coherence Tomography Signal Enhancement
Amirhossein Osooli - Mohammadhossein Salimi
کاربرد هوش مصنوعی در حسابداری
پریسا عابدی - حسین بوداقی خواجه نوبر
بررسی نقش فناوری هوش مصنوعی در فرآیند ایجاد مدل خدمات دستگاه خودپرداز
سجاد یوسفی - مریم پورنجف - آیدا محمدی - ساحل پرسته
مفاهیم حسابداری مدیریت راهبردی در شرکتها، مزایا، معایب و راهکارها
علی نمازیان - علی محمدی
Multi-Objective Optimization of the Impeller of a mini Blood Pump: Balancing Outlet Pressure and Scalar Shear Stress
Reza Sahebi-Kuzeh kanan - Hanieh Niroomand-oscuii - Habib Badri Ghavifekr - Farzan Ghalichi
بررسی نقش شفافیت اطلاعات مالی و حسابرسی مالیاتی در بهبود تمکین مالیاتی و تأثیر آن بر رشد اقتصادی پایدار
الهه آقاخانی - مرتضی خانلاری
Impact of Dynamic and Static Sports on Growth and Anthropometric Characteristics (Height, Weight, BMI) in Children and Adolescents
Amin Partovi fard - Mahmoodreza Azghani - Sadra Jalali - Samin Asghari
more
Samin Hamayesh - Version 42.4.1