0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Improving Generalization in MRI-Based Deep Learning Models for Total Knee Replacement Prediction
Authors :
Ehsan Karami
1
Hamid Soltanian-Zadeh
2
1- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
2- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
Keywords :
knee osteoarthritis،deep learning،medical image analysis،MRI،total knee replacement prediction،model generalization
Abstract :
Knee osteoarthritis (KOA) is a common joint disease that causes pain and mobility issues. While MRI-based deep learning models have demonstrated superior performance in predicting total knee replacement (TKR) and disease progression, their generalizability remains challenging, particularly when applied to imaging data from different sources. In this study, we show that replacing batch normalization with instance normalization, using data augmentation, and applying contrastive loss improves generalization. For training and evaluation, we used MRI data from the Osteoarthritis Initiative (OAI) database, considering sagittal fat-suppressed intermediate-weighted turbo spin-echo (FS-IW-TSE) images as the source domain and sagittal fat-suppressed three-dimensional (3D) dual-echo in steady state (DESS) images as the target domain. The results demonstrated a statistically significant improvement in classification metrics across both domains by replacing batch normalization with instance normalization in the baseline model, generating augmented input views using the Global Intensity Non-linear (GIN) augmentation method, and incorporating a supervised contrastive loss alongside the classification loss to align representations of samples with the same label. In the source domain, this approach achieved an accuracy of 74.12 ± 2.90, an F1 score of 74.57 ± 3.33, and a ROC AUC of 80.65 ± 2.83, outperforming the baseline model, which scored 71.29 ± 4.43, 69.76 ± 4.58, and 77.79 ± 4.66, respectively. In the target domain, the method achieved an accuracy of 70.04 ± 2.49, F1 score of 67.30 ± 3.57, and ROC AUC of 78.12 ± 1.97, compared to the baseline’s 52.87 ± 3.17, 18.98 ± 16.89, and 59.33 ± 6.20. The GIN method with contrastive loss performed better than all evaluated single-source domain generalization methods when using 3D instance normalization. Comparing GIN with and without contrastive loss (for both normalization types) showed that adding contrastive loss consistently led to better performance.
Papers List
List of archived papers
Coronary Full artery segmentation using U-Net neural network architecture
Rezvan Monjezi - Mahdieh Ghasemi - Mahdi Salehi - Alireza Rowhanimanesh - Samaneh Tabaee
Leveraging Normal White Matter Hyperintensity Context for Enhanced Pathological Segmentation via Multi-Class Deep Learning
Mahdi Bashiri Bawil - Mousa Shamsi - Ali Fahmi Jafargholkhanloo - Abolhassan Shakeri Bavil
نقش تحول دیجیتال در روانشناسی محیط کار و روحیه کارگروهی
حیدر محمدزاده سالطه - نیما قاسم زاده شهرک
پیاده سازی iot در زنجیره تامین، چالشها و فرصتها با در نظر گرفتن industry 4
مهدی رضایی - سلمان ولی محمدی
Quantum Computing for AI: Current Status and Future Roadmap
Nayereh Majd
مروری بر کاربردهای هوش مصنوعی درصنعت
امیرپاشا گرگان نژاد - لاریسا خدادادی
Examination and Analysis of the Influence of Near-Infrared Light Absorption by Hair Melanin on fNIRS Signal
Elmira Baghaeifar - Sina Shamekhi
تبیین ابعاد و مؤلفههای مؤثر بر موفقیت مالیات کسب و کارهای نوپا مبتنی بر قابلیتهای نوآورانه با رویکرد هوش مصنوعی در شرایط اقتصاد امروز
حسین بوذری
نقش هوش مصنوعی در شخصیسازی تجربه مشتری: بررسی رفتار مصرفکننده در فروشگاههای آنلاین
بهزاد بالازاده - حسین بوداقی - نازلی قراچورلو
بررسی تاثیر شبکه عصبی مصنوعی بر روی دقت مدل های مربوط به برآوردهای حسابداری
جمال برزگر خانقاه - سیدمحسن صالحی وزیری
more
Samin Hamayesh - Version 42.5.2