0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Leveraging Normal White Matter Hyperintensity Context for Enhanced Pathological Segmentation via Multi-Class Deep Learning
Authors :
Mahdi Bashiri Bawil
1
Mousa Shamsi
2
Ali Fahmi Jafargholkhanloo
3
Abolhassan Shakeri Bavil
4
1- Tabriz University of Technology (Sahand)
2- Tabriz University of Technology (Sahand)
3- University of Mohaghegh Ardabili
4- Department of Radiology, Imam Reza Hospital Tabriz University of Medical Sciences Tabriz, Iran
Keywords :
White matter hyperintensities (WMH)،deep learning،medical image segmentation،FLAIR MRI،multi-class classification،U-Net،pathological segmentation،neuroimaging
Abstract :
White matter hyperintensities (WMHs) on FLAIR MRI are critical indicators of cerebrovascular dysfunction associated with elevated risks of stroke, dementia, and death. Current automated segmentation methods suffer from false positive detection in periventricular regions, failing to distinguish normal or aging-related hyperintensities from pathologically significant lesions, which reduces clinical applicability and diagnostic accuracy. This study investigates whether training deep learning models to explicitly differentiate between normal and abnormal WMH improves pathological WMH segmentation performance compared to traditional binary approaches. Four state-of-the-art architectures (U-Net, Attention U-Net, DeepLabV3Plus, Trans-U-Net) were evaluated across two training scenarios using 1,974 FLAIR images from 100 MS patients with expert-annotated ground truths. Scenario 1 employed binary training (background vs abnormal WMH), while Scenario 2 utilized three-class training (background, normal WMH, abnormal WMH). Statistical analysis included paired t-tests and Cohen's d effect size calculations. U-Net achieved the most substantial improvement in Scenario 2 with 55.6% increase in Dice coefficient (0.693 vs 0.443) and 131% precision enhancement (p < 0.0001, Cohen's d = 0.971). Traditional CNN-based architectures demonstrated larger effect sizes than transformer-based models. The three-class training approach significantly enhances pathological WMH segmentation while maintaining clinical feasibility, providing a validated framework for improving automated neuroimaging tools' diagnostic utility.
Papers List
List of archived papers
Dynamic Modeling of a Cable-Driven Series Elastic Upper Extremity Exoskeleton for Post-Stroke Rehabilitation
Ali Selk Ghafari - Omid Kalantari
تأثیر هوش مصنوعی بر طراحی ارگونومیک محیط کار: بررسی الگوریتمهای یادگیری ماشین و ایمنی تولید فولاد
معراج جلیلی - پوریا علیمرادی - فرید نصیریان
Evaluation of Primary Stability of Dental Implants in Synthetic and Natural Bone A Comparative Study
Mahdi Farrokhi Kashtiban - Gholamreza Rouhi
مشارکت دادن حسابداران مدیریت در پایداری شرکت
رعنا شهد آور - بیتا یوسف پور نوینی
EJES: A Diverse Estimator Bank Framework for High-Resolution EEG/MEG Source Localization
Reza Khajehsarvi - Sayed Mahmoud Sakhaei - Sadegh Jamshidpour
Effects of laminectomy on active-passive spine loads: a musculoskeletal finite element modeling investigation
Aida Ahmadi - Navid Arjmand - Parisa Azimi
Investigation of the presence of movement intention during sequential hand movements using neurophysiological analyses of EEG signals
Elnaz Eilbeigi
نوآوری در امنیت هوشمند: طراحی سیستمهای AI با مقاومت ذاتی در برابر تهدیدات سایبری
علی غلام نتاج - محمد عرفان رحمانیان کوشککی - امیدرضا حمیدی نیا - محمد مهدی افتخاری
هزینه یابی بر اساس فعالیت(ABC) و پیامد های آن برای نو آوری باز
دکتر مهدی زینالی - رضا عباس زاده کر
Deep Learning Approaches for Alzheimer’s Disease Diagnosis: A Comprehensive Review
Mahdi Jafari Asl - Saba Haji Molla Rabie
more
Samin Hamayesh - Version 42.5.2