0% Complete
English
صفحه اصلی
/
دومین کنفرانس ملی عصر انفجار تکنولوژی؛ هوش مصنوعی، تحولی در صنعت، تجارت و زنجیره تامین و دومین کنفرانس ملی علم داده در کاربردهای مهندسی
Detecting MDD based on EEG signals: Frontal or Temporal Region
نویسندگان :
Ali Zeraatkar
1
Amirreza Ahmadi
2
Saeed Yarmohammdi
3
Reza Rostami
4
1- University of Victoria
2- دانشگاه آزاد واحد علوم تحقیقات
3- دانشگاه آزاد واحد تهران مرکزی
4- دانشگاه تهران
کلمات کلیدی :
EEG،Major Depressive Disorder،Signal Processing،Machine Learning،Frontal and Temporal Region of the brain
چکیده :
Psychological problems like depression affect a person's growth, including thoughts, feelings, and behaviors. There is no laboratory test for detecting depression, which is the main reason for the wrong diagnosis of depression. Analysis of MDD's underlying neurophysiological functions can improve the detection and treatment of this mental disorder. Increasingly, EEG is used to diagnose and study brain disorders and functions; in this study we introduced a subjective-based method to detect depression with the significance of decreasing the electrode montage required for recording the EEG signals. Features are extracted from the frontal and temporal regions of the brain using eight electrodes. The linear features used are delta, theta, alpha, and beta relative band powers and alpha absolute power. The nonlinear features used are Sample Entropy (sampEn) and Higuchi's fractal dimension (HFD). The classifiers used in this study are Support Vector Machine (SVM), Logistic Regression (LR), and naïve Bayes (NB). The highest classification accuracy of 91.67% with an F1 score of 94.12% and Roc-Auc score of 98.44% were achieved for detecting depression using NB among the brain's frontal region. On the other hand, the highest classification accuracy among the right hemisphere of the temporal region was 83.34% with a Roc-auc score of 90% and F1 score of 87.5%. The analysis found that depression affects the frontal region of the brain and the left hemisphere of the temporal region more significantly with respect to the right hemisphere of the temporal region.
لیست مقالات
لیست مقالات بایگانی شده
یادگیری عمیق مبتنی بر مکانیسم توجه جمعیت برای تحلیل احساسات بلادرنگ در چتهای زنده یوتیوب
علی فرزین
کاربردها، تکنیکها، چالشها و ملاحظات اخلاقی و اجتماعی در سیستمهای پیشنهاددهنده
کیانا رحیمی - سمانه شیبانی
ECG-Based Detection of Acute Myocardial Infarction Using a Wrist-Worn Device: a Machine Learning Approach
Tania Hossein Khani - Amir hossein Tajarrod - Asghar Zarei - Mousa Shamsi
بررسی تأثیر اطلاعات محیطی شرکت و ریسک عدم بازپرداخت بدهیها بر ریسک سقوط قیمت سهام با توجه به نقش تعدیلگر بحران کمآبی
زهره حاجیها - شهرام کامکار
بررسی نقش فناوری هوش مصنوعی در فرآیند ایجاد مدل خدمات دستگاه خودپرداز
سجاد یوسفی - مریم پورنجف - آیدا محمدی - ساحل پرسته
آلیاژهای حافظهدار نیکل-تیتانیم در مهندسی پزشکی: نوآوریها، چالشها و کاربردهای پزشکی
مهدیه سلطانعلی پور - میلاد بدر - جعفر خلیل علافی
ارتباط بین رفتار سرمایه گذاری و خطر سقوط قیمت سهام
بیتا دلنواز اصغری - لیلا محمدی - بهنام رنجبرالوار - مهدی پورعلی
طراحی بهینهی پلاکهای ارتوپدی برای ترمیم شکستگی ساب تروکانتریک استخوان ران بر پایهی مدلسازی آماری و روشهای یادگیری ماشین
ماجده رضائی - مسعود شریعت پناهی - مراد کریم پور - هادی قطان کاشانی
بررسی تاثیر برند سازی شخصی و سرمایه انسانی استراتژیک بر عملکرد شرکتهای تولید فراورده های گوشتی استان اصفهان
علی فردوس مکان
شناسایی عوامل موثر بر تمایل به فرار مالیاتی با در نظر گرفتن عوامل فرهنگی با رویکرد تحلیل مضمون
نیما صدری نوبر زاد - پریسا صدری نوبر زاد
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2