0% Complete
صفحه اصلی
/
دومین کنفرانس ملی عصر انفجار تکنولوژی؛ هوش مصنوعی، تحولی در صنعت، تجارت و زنجیره تامین و دومین کنفرانس ملی علم داده در کاربردهای مهندسی
Detecting MDD based on EEG signals: Frontal or Temporal Region
نویسندگان :
Ali Zeraatkar
1
Amirreza Ahmadi
2
Saeed Yarmohammdi
3
Reza Rostami
4
1- University of Victoria
2- دانشگاه آزاد واحد علوم تحقیقات
3- دانشگاه آزاد واحد تهران مرکزی
4- دانشگاه تهران
کلمات کلیدی :
EEG،Major Depressive Disorder،Signal Processing،Machine Learning،Frontal and Temporal Region of the brain
چکیده :
Psychological problems like depression affect a person's growth, including thoughts, feelings, and behaviors. There is no laboratory test for detecting depression, which is the main reason for the wrong diagnosis of depression. Analysis of MDD's underlying neurophysiological functions can improve the detection and treatment of this mental disorder. Increasingly, EEG is used to diagnose and study brain disorders and functions; in this study we introduced a subjective-based method to detect depression with the significance of decreasing the electrode montage required for recording the EEG signals. Features are extracted from the frontal and temporal regions of the brain using eight electrodes. The linear features used are delta, theta, alpha, and beta relative band powers and alpha absolute power. The nonlinear features used are Sample Entropy (sampEn) and Higuchi's fractal dimension (HFD). The classifiers used in this study are Support Vector Machine (SVM), Logistic Regression (LR), and naïve Bayes (NB). The highest classification accuracy of 91.67% with an F1 score of 94.12% and Roc-Auc score of 98.44% were achieved for detecting depression using NB among the brain's frontal region. On the other hand, the highest classification accuracy among the right hemisphere of the temporal region was 83.34% with a Roc-auc score of 90% and F1 score of 87.5%. The analysis found that depression affects the frontal region of the brain and the left hemisphere of the temporal region more significantly with respect to the right hemisphere of the temporal region.
لیست مقالات
لیست مقالات بایگانی شده
نقش هوش مصنوعی و اینترنت اشیاء در زنجیره تامین در صنعت آب و فاضلاب
محمد ناصرین - حمیدرضا رضوانی - افسانه نیک محمدی
Using Advanced Ensemble Machine Learning Models to Predict Traffic in SDN-Based Networks: A Comparative Study of Bagging, Boosting, and Stacking Approaches
Raha Pakzad - Sasan GharaPasha - Nasrin Firouz - Ramin Habibzadehsharif
تحلیل کاربردی الگوریتم کلونی مورچگان چندهدفه در حل مسائل بهینهسازی چندهدفه
ملیحه نیک سیرت
شناسایی قدرت پسورد با استفاده از روشهای یادگیری ماشین دسته جمعی
مهناز درودی - سیدحسن مرتضوی زارچ - فاطمه زارع مهرجردی - محسن سرداری زارچی
نقش هوش مصنوعی در افزایش تابآوری زنجیره تأمین در مواجهه با بحرانهای جهانی
رسول قوسینی - مرتضی نوروززاد بناء
بررسی ارتباط بین کیفیت حسابرسی و عدم شفافیت اطلاعات با هزینه سرمایه
سمیه فرهادی - محمد رستمی
Transforming Sentiment Analysis with a New LLM Architecture
Hossein Gholamalinejad - Tahoora Ramezanimoghaddam
بهبود تجربه مشتری در پلتفرمهای ویدئوی درخواستی از طریق راهکارهای هوشمند مبتنی بر داده
احمد سفلایی - محمد یوسفی نژاد عطاری
جایگاه هوش مصنوعی در آینده اقتصاد ایران
سید کمال صادقی - فاطمه نمازی - هانیه پور مهدی
تأثیر گردش سیاسی بر رفتار گزارشگری حسابرس با تأکید بر اندازه موسسه حسابرسی
فریور بلندنظر - مرتضی خانلاری
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.3