0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
ECG-Based Detection of Acute Myocardial Infarction Using a Wrist-Worn Device: a Machine Learning Approach
نویسندگان :
Tania Hossein Khani
1
Amir hossein Tajarrod
2
Asghar Zarei
3
Mousa Shamsi
4
1- دانشکده مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران
2- دانشکده مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران
3- دانشکده مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران
4- دانشکده مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران
کلمات کلیدی :
Machine learning،Acute myocardial infarction،ECG،Wrist-worn wearable ECG،Hjorth parameters
چکیده :
Identifying acute myocardial infarction (AMI) at an early stage, particularly outside the hospital, remains one of the most pressing challenges in modern healthcare. While many wearable devices can record electrocardiogram (ECG) signals, most lack the essential precordial leads that are critical for accurate AMI detection. In this study, we evaluate the diagnostic capability of a wrist-worn, two-lead wearable ECG (wECG) device and compare its performance with the clinical standard, the conventional 12-lead ECG. Our analysis is based on a dataset where wECG and standard 12-lead ECG signals were recorded simultaneously from three participant groups: healthy individuals (CTRL), patients diagnosed with AMI, and patients with other cardiovascular diseases (CVD). This paper proposes a framework for diagnosing AMI patients as distinct from healthy individuals. Within this framework, we extracted both statistical features and Hjorth parameters. Then employed four different machine learning classifiers to assess classification performance across various scenarios. Using mutual information and f-test scores, we selected the best lead based on inter-class separation. The standard 12-lead ECG models achieved nearly flawless results, reaching 100% average accuracy. The wECG device also demonstrated impressive capabilities, accurately distinguishing between healthy participants and AMI patients with more than 98% average accuracy. Notably, the V5-LA configuration, when processed with the KNN classifier, achieved perfect average accuracy, highlighting the strong diagnostic power of this single lead. Overall, our results indicate that with careful design, a compact wECG device has the potential to serve as a reliable and highly effective tool for AMI detection in pre-hospital environments.
لیست مقالات
لیست مقالات بایگانی شده
From Handcrafted to Deep Representations: ReliefF and DANN Feature Fusion for EEG Emotion Classification
Zahra Mahdinezhad - Raheleh Davoodi
Topology Optimization for Optimal Design of Human Tibial Fixation Plates toward Improving Biomechanical Compatibility
Aida Ahmadi - Taha Goudarzi
Stem cell engineering in tissue repair: A Review of Therapeutic Perspectives
Farnaz Mozayani - Mohammadbagher Kargar
نقش هوش مصنوعی در بهینهسازی مدیریت و بهرهبرداری از منابع در رایانش ابری
احمد محسن پورگلروئیه - مهدی رضاپورمیرصالح
بررسی و مقایسه روشهای تشخیص جوامع در شبکههای اجتماعی با همافزایی الگوریتمهای تکاملی و یادگیری ماشین
زهرا انیسی نسب - محمد مصلح
Application of machine learning approach for prediction the heat capacity of amine
Aboozar Khajeh
تاثیر مولفه های هوش معنوی بر قضاوت حرفه ای حسابرسان
علیرضا عظیمی ثانی
Late Fusion-Based Deep Learning for Breast Cancer Classification in Mammography
Mehdi Baharloo - Ata Jodeiri
تأثیرات و اخلاقیات استفاده از هوش مصنوعی: شواهدی از هند
رعنا شهدآور - ثریا قربانپور کولانی جدید - فاطمه حضرتی پور
بررسی تأثیر اطلاعات محیطی شرکت و ریسک عدم بازپرداخت بدهیها بر ریسک سقوط قیمت سهام با توجه به نقش تعدیلگر بحران کمآبی
زهره حاجیها - شهرام کامکار
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1