0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Comparative Analysis of Machine Learning and Deep Learning Models for Epileptic Seizure Detection Using the CHB-MIT EEG Dataset
Authors :
Pouya Taghipour Langrodi
1
Amirsadra Khodadadi
2
Mahtab Dastranj
3
Golnaz Baghdadi
4
1- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
2- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
3- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
4- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
Keywords :
Epilepsy،Neural Networks،Seizure Detection،Electroencephalography،EEG،Deep Learning،Machine Learning،LSTM
Abstract :
Epilepsy is one of the most common neurological disorders that usually comes with sudden and unpredictable seizures and can severely affect the quality of life of patients. This study aims to design and evaluate different artificial approaches for automated seizure detection using EEG signals from the CHB-MIT dataset. This dataset contains 23 patients suffering from epileptic seizures, including boys and girls aged between 1.2 to 22 years old. Feature extraction was performed across time, frequency, and time-frequency domains. Eight classifiers were implemented in this study, including four machine learning algorithms (SVM, KNN, Decision Tree, and naïve Bayes) and four deep learning architectures (Artificial Neural Network, LSTM, TCN, and Transformer). The results demonstrated that the LSTM and TCN models outperformed other classifiers in detecting the preictal and ictal stages, achieving an accuracy of 96.0% and 97.3% with the sensitivity of 93.5% and 90.5%. Moreover, ANN and Transformer achieved 94.8% and 93.2% accuracy. In contrast, SVM, KNN, DT, and NB represented 93.1%, 92.4%, 81.2%, and 71.9% in accuracy. By preparing a uniform data preparation baseline for the CHB-MIT dataset, this study made an identical comparison between machine learning and deep learning models to propose the best approach for epileptic seizure detection.
Papers List
List of archived papers
Preparation of pH sensitive Carboxymethyl cellulose / Polyvinylpyrrolidone based hydrogels for drug delivery applications
Masoumeh Olad Mazraeh - Hanieh Shokrkar - Nilufar Nasirpur
چارچوبهای توسعه پایدار و اخلاقمدار هوش مصنوعی در نظام حقوقی ایران و اسناد بینالمللی
سیده مریم اعتماد - سجاد نعیم وفا
Mental Workload Classification using Bidirectional LSTM Networks with Multi-Feature Fusion
Fatemeh Farokhshad - Sepideh Bahri Hampa - Amirhesam Ghasri - Sara Bagherzadeh
شناسایی و اولویت بندی موانع اجرای حسابداری منابع انسانی بوسیله TOPSIS
حسن پاکی
هوش مصنوعی و مدیریت مالی و سرمایه
محمد ملکی
Application of machine learning approach for prediction the heat capacity of amine
Aboozar Khajeh
تبیین روابط بین استراتژی رقابتی ، توانمندی های بازاریابی و عملکرد سرمایهگذاری صادراتی با تکیه بر دیدگاه مبتنی بر منابع با استفاده از هوش مصنوعی
حسین بوذری
نقش پیاده سازی هوش مصنوعی در تحول ارتباطات بازاریابی وتوسعه ی شایستگی اخلاقی برندهای فعال
شبنم سخی نیا
قیمتگذاری پویا توسط هوش مصنوعی
رضا رستمی - مهدی فرساد غلامی - مهدی محمدی امین
طراحی زنجیره تأمین سبز با رویکرد هوش مصنوعی و سیاستهای ESG
علیرضا فولاد - سبحان معارفوند - حسین پورابراهیم گیل کلایه - علی ایل سعادتمند
more
Samin Hamayesh - Version 42.5.2