0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Comparative Analysis of Machine Learning and Deep Learning Models for Epileptic Seizure Detection Using the CHB-MIT EEG Dataset
Authors :
Pouya Taghipour Langrodi
1
Amirsadra Khodadadi
2
Mahtab Dastranj
3
Golnaz Baghdadi
4
1- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
2- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
3- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
4- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
Keywords :
Epilepsy،Neural Networks،Seizure Detection،Electroencephalography،EEG،Deep Learning،Machine Learning،LSTM
Abstract :
Epilepsy is one of the most common neurological disorders that usually comes with sudden and unpredictable seizures and can severely affect the quality of life of patients. This study aims to design and evaluate different artificial approaches for automated seizure detection using EEG signals from the CHB-MIT dataset. This dataset contains 23 patients suffering from epileptic seizures, including boys and girls aged between 1.2 to 22 years old. Feature extraction was performed across time, frequency, and time-frequency domains. Eight classifiers were implemented in this study, including four machine learning algorithms (SVM, KNN, Decision Tree, and naïve Bayes) and four deep learning architectures (Artificial Neural Network, LSTM, TCN, and Transformer). The results demonstrated that the LSTM and TCN models outperformed other classifiers in detecting the preictal and ictal stages, achieving an accuracy of 96.0% and 97.3% with the sensitivity of 93.5% and 90.5%. Moreover, ANN and Transformer achieved 94.8% and 93.2% accuracy. In contrast, SVM, KNN, DT, and NB represented 93.1%, 92.4%, 81.2%, and 71.9% in accuracy. By preparing a uniform data preparation baseline for the CHB-MIT dataset, this study made an identical comparison between machine learning and deep learning models to propose the best approach for epileptic seizure detection.
Papers List
List of archived papers
کاهش توهم در مدلهای زبانی بزرگ جهت تولید اطلاعات درست
زهرا روزبهانی
حکمرانی داده و هوش مصنوعی در اقتصاد دیجیتال: چالش ها، چارچوب ها و الزامات اخلاقی
علیرضا فولاد - ابوالفضل حسین زاده - علی عبدلی
تاثیر ارتباطات سیاسی و فرصت های سرمایه گذاری بر اجتناب مالیاتی
بیتا دلنواز - امیرحسین قوچی - مهنا پیرایه جو - الهه صفری
بررسی عوامل رویکرد مؤثرمالی در بازاریابی محتوای دیجیتال بر روابط شرکتها و نامهای, برند تجاری
حسین بوذری
Super-Resolution Generative Adversarial Network for Photothermal Optical Coherence Tomography Signal Enhancement
Amirhossein Osooli - Mohammadhossein Salimi
Impact of Impeller Blade Number on the Hemodynamic Performance of Specially Designed Mini VAD
Nasser Alizadeh - Hanieh Niroomand-Oscuii - Farzan Ghalichi
Semi-Automatic Multi-Stage Artifact Removal in EEG During Subthreshold GVS: A Machine Learning Approach for Neuromodulation Studies
Mahdi Babaei - Sepideh Hajipour Sardouie - Martin Keung - Varsha Sreenivasan - Hanaa Diab - Maryam S. Mirian - Martin J. McKeown
Multi-transform diagnostic analysis based on gradient-based features for breast cancer detection in thermal imaging
Ainaz Daneshdoust - Sedigheh Ghofrani - Mahdi Eslami - Iman Ahanian
Hierarchical Task-Structured GNN Meta-Learning for Few-Shot EEG Motor Imagery Decoding
Mohammad Armin Dehghan - Mohammad Mohammadianbisheh - Mohammad Bagher Shamsollahi
پذیرش فناوری هوش مصنوعی در بین کارکنان واحدهای مالی و حسابداری در صنعت خدمات اشتراکی
زهرا اسمی - معصومه جعفری - فرهاد جباری متین
more
Samin Hamayesh - Version 42.5.2