0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Hierarchical Task-Structured GNN Meta-Learning for Few-Shot EEG Motor Imagery Decoding
Authors :
Mohammad Armin Dehghan
1
Mohammad Mohammadianbisheh
2
Mohammad Bagher Shamsollahi
3
1- دانشگاه صنعتی شریف، تهران، ایران
2- دانشگاه صنعتی شریف، تهران، ایران
3- دانشگاه صنعتی شریف، تهران، ایران
Keywords :
EEG Signals،BCI Decoding،Meta-learning،Graph Neural Networks (GNNs)،Subject-level Adaptation،Hierarchical Task Structures
Abstract :
Motor imagery classification from electroencephalo- gram (EEG) signals is a core challenge in brain–computer in- terface (BCI) systems. Yet, strong inter-subject variability, where each subject follows a distinct distribution, renders conventional learning approaches poorly suited for generalization to unseen subjects. Few-shot meta-learning offers a promising alternative by enabling rapid adaptation to new subjects with only limited labeled data. At the same time, neuroscience evidence emphasizes that EEG decoding should leverage network-level interactions rather than treating electrodes as independent sources, moti- vating graph-based representations. In this work, to leverage network-level structure, We propose a principled graph construc- tion pipeline to represent EEG data. Also to enable subject- level adaptation in few-shot settings, we use a meta-learning framework that learns Hierarchical Task Structures, through which we exploit inter-subject correlations, and employ GNN architectures as the learner. Experiments on the PhysioNet motor imagery dataset show that our method achieves over 10% higher accuracy than baseline models, while reducing variance across subjects by roughly 10%. This demonstrates that combining graph-based representations with few-shot meta-learning yields more reliable and subject-adaptive BCI systems.
Papers List
List of archived papers
Biomedical Applications of Pectin Nanomaterials: Progress and Perspectives
Maryam Rajabzadeh-khosroshahi - Ali Baradar Khoshfetrat - Mehdi Salami-Kalajahi
Biomechanical Contrast Between Native and Decellularized Triple-Negative Breast Tumors in Mice
Mohammad Javad Farjam - Saman Asadi - Ashkan Azimzadeh - Saeid Amanpour - AbdolMohammad Kajbafzadeh - Mohammad Ali Nazari
Optimization Dynamic Stability and Energy Efficiency in Human-Like Bipedal Robot Over a Full Gait Cycle
Mahdi Sadeghi - Mostafa Rostami - Soroush Sadeghnejad
Dual pH-and glucose-responsive terpolymer based on phenylboronic acid
FATEMEH GHASHGHAEE ZADEH - Mahdi Salami hosseini - Mehdi Salami Kalajahi
بررسی ارتباط بین توانایی مدیریت و محدودیت مالی با تاکید بر نقش دانش مالی هیئت مدیره در شرکتهای دانش بنیان پذیرفته شده در بورس اوراق بهادار تهران
آروین نیک نام - قادر بابائی
Microfluidic Generation of Core-Shell Breast Tumor Spheroids for Evaluating Dose-Dependent Responses to Quercetin
Fatemeh Zarei - Mohammad Hashem Molayemat - Amir Shamloo - Mohammad Mehdi Sadeghian
قوانین و مقررات مربوط به هوش مصنوعی: چالشها و فرصتها
محمد جعفری
تجزیه و تحلیل رفتار بیماران پارکینسون با استفاده از نیروسنج صفحه ای مبتنی بر هوش مصنوعی
شیدا ورزشی - روزبه عابدینی نسب - محمد نجفی آشتیانی - مهراد پوریوسف میاندوآب
Finite Element Modeling of Bare-Tip and Cylindrical Diffusing Optical Fibers for Prostate Cancer Focal Laser Ablation
Sajjad Saadati Rad - Alireza Mehridehnavi - Seyed Mojtaba Karbalaee
شناسایی عوامل تعیین کننده قصد انطباق مالیات با تاکید بر نظریه رفتار برنامه ریزی شده
نیما صدری نوبر زاد - پریسا صدری نوبر زاد
more
Samin Hamayesh - Version 42.4.1