0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Hierarchical Task-Structured GNN Meta-Learning for Few-Shot EEG Motor Imagery Decoding
Authors :
Mohammad Armin Dehghan
1
Mohammad Mohammadianbisheh
2
Mohammad Bagher Shamsollahi
3
1- دانشگاه صنعتی شریف، تهران، ایران
2- دانشگاه صنعتی شریف، تهران، ایران
3- دانشگاه صنعتی شریف، تهران، ایران
Keywords :
EEG Signals،BCI Decoding،Meta-learning،Graph Neural Networks (GNNs)،Subject-level Adaptation،Hierarchical Task Structures
Abstract :
Motor imagery classification from electroencephalo- gram (EEG) signals is a core challenge in brain–computer in- terface (BCI) systems. Yet, strong inter-subject variability, where each subject follows a distinct distribution, renders conventional learning approaches poorly suited for generalization to unseen subjects. Few-shot meta-learning offers a promising alternative by enabling rapid adaptation to new subjects with only limited labeled data. At the same time, neuroscience evidence emphasizes that EEG decoding should leverage network-level interactions rather than treating electrodes as independent sources, moti- vating graph-based representations. In this work, to leverage network-level structure, We propose a principled graph construc- tion pipeline to represent EEG data. Also to enable subject- level adaptation in few-shot settings, we use a meta-learning framework that learns Hierarchical Task Structures, through which we exploit inter-subject correlations, and employ GNN architectures as the learner. Experiments on the PhysioNet motor imagery dataset show that our method achieves over 10% higher accuracy than baseline models, while reducing variance across subjects by roughly 10%. This demonstrates that combining graph-based representations with few-shot meta-learning yields more reliable and subject-adaptive BCI systems.
Papers List
List of archived papers
سامانه هوشمند مبتنی بر بینایی ماشین برای تشخیص افتادن سالمندان: رویکردی ایمن، دقیق و سریع
سیدحسن نوری - هدی محمدزاده
ارزش های فردی و درک حسابرسان از تفکر نئولیبرالیسم
الهه زارع ابراهیم آبادی - بهمن بنی مهد - مهدی مرادزاده فرد - قدرت اله طالب نیا
Data Mining in the Age of Information Explosion: An Intelligent Analysis Tool for Social Media
Hossein Bodaghi Khajeh Noubar - Seyed Meead Hosseini - Shiva Mohammadi
Classification of Delta Band Motor Imagery EEG Signals in SCI Patients using the Regularized Common Temporal Pattern Method
Mahdi Babaei - Sorena Shadzinavaz - Sepideh Hajipour Sardouie
کشف قوانین انجمنی با استفاده از الگوریتم ژنتیک در جهت افزایش دقت تشخیص بیماری تیروئید
نرمین قادر - فرهاد سلیمانیان قره چپق
Finite Element Analysis of Lumbar Spine Biomechanics Following Cement Augmentation with Different PMMA Volumes: A Comparison with Intact Spine
Reihane Yazdani - Mohammdjavad (Matin) EinaAfshar - Azadeh Ghoochani - Nima Jamshidi
Optimization and Novel insights: The convergence of Quantum Computing and Data Science in Engineering Application
Nayereh Majd
Document Clustering Using Deep Pre-trained Language Model Embeddings for Information Retrieval
Mahdi Mohammadiha - Mohammad Hassan Sadreddini - Morteza Mohammadi Zanjireh
Benchmarking Class Activation Map Methods for Explainable Brain Hemorrhage Classification on Hemorica Dataset
Zahra Rafati - Mohamad Hoseyni - Javad Khoramdel - Amirhossein Nikoofard
بررسی رابطه مدیریت سرمایه در گردش با عملکرد مالی در بورس اوراق بهادار تهران
علی مبارکی
more
Samin Hamayesh - Version 42.5.2