0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Classification of Delta Band Motor Imagery EEG Signals in SCI Patients using the Regularized Common Temporal Pattern Method
Authors :
Mahdi Babaei
1
Sorena Shadzinavaz
2
Sepideh Hajipour Sardouie
3
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
3- دانشگاه صنعتی شریف
Keywords :
Brain Computer Interface،Spinal Cord Injury،Motor Imagery،Feature Extraction،Regularized Common Temporal Pattern
Abstract :
Accurate classification of motor imagery tasks is essential for enhancing brain–computer interfaces (BCIs) in spinal cord injury (SCI) rehabilitation. The use of raw time samples often overlooks temporal dependencies in electroencephalography (EEG), limiting classification accuracy. We propose the Regularized Common Temporal Pattern (RCTempP), a novel time-domain feature extraction method that emphasizes discriminative temporal samples. RCTempP was evaluated on EEG recordings from SCI patients imagining five distinct hand movements within the 0.3–3 Hz band. Compared to raw time samples, Common Temporal Pattern (CTP), and Extended CTP (ECTP) approaches, RCTempP yielded statistically significant improvements in eight out of ten class pairs, for which the average accuracy across subjects ranged from 70.4% to 75.1%. Performance was assessed using a fivefold cross-validation protocol to ensure robust and generalizable results. Importantly, RCTempP’s significant temporal filters emerged post‐cue onset and corresponded to movement‐related cortical potential peaks. These findings highlight RCTempP’s promise for advancing motor imagery BCIs in SCI rehabilitation.
Papers List
List of archived papers
Robust Speckle Noise Reduction in IVUS Imaging: Advancing Autoencoders and Non-Local Means with Particle Swarm Optimization
Shirin Ashtari Tondashti - Navid Adib - Mehran Alyali - Mahdis Yaghoubi - Seyed Kamaledin Setarehdan
پلتفرم هوشمند «دستیار پیمانکار»
محمد عبدالهی سنو
تاثیر هوش مصنوعی بر توسعه اقتصادی
سعید انور خطیبی - مهنا پیرایه جو
Coronary Full artery segmentation using U-Net neural network architecture
Rezvan Monjezi - Mahdieh Ghasemi - Mahdi Salehi - Alireza Rowhanimanesh - Samaneh Tabaee
کاربرد هوش مصنوعی برای پیشبینی تقاضا در مدیریت زنجیره تامین
امیرمحمد ایل غمی
Experimental and Theoretical Analysis of the Mechanical Performance of 3D-Printed Biomedical Splints Made of PLA/CF with Structural Geometric Variations
ELNAZ ABEDINI - Nima Feizlou
Automated Tibial Bone Segmentation using 2D Swin-Unet on Knee X-ray Images
Ali Kazemi - Abolfazl Zamanirad - Soodabeh Esfandiary - Ebrahim Najafzadeh - Mohammad Hossein Nabian - Parastoo Farnia - Alireza Ahmadian
چالشها و فرصتهای نگارش و فرایند داوری مقالات با هوش مصنوعی
مرضیه باباشپور اصل
Photoresponsive Zwitterionic Block Copolymer Nanoparticles Prepared by a One-Step Nanoprecipitation–Photocrosslinking Strategy for Precision Cancer Chemotherapy
Helia Heydarinasab - Vahid Haddadi Asl - Mahdi Tohidian - Hanie Ahmadi
A Computational Model of Phase-Delayed Balanced Biphasic Deep Brain Stimulation for Essential Tremor in a Cerebellar-Basal Ganglia-Thalamocortical Network
Shabnam Andalibi Miandoab - Nazlar Ghasemzadeh
more
Samin Hamayesh - Version 42.5.2