0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Automated Tibial Bone Segmentation using 2D Swin-Unet on Knee X-ray Images
Authors :
Ali Kazemi
1
Abolfazl Zamanirad
2
Soodabeh Esfandiary
3
Ebrahim Najafzadeh
4
Mohammad Hossein Nabian
5
Parastoo Farnia
6
Alireza Ahmadian
7
1- دانشگاه علوم پزشکی تهران
2- دانشگاه علوم پزشکی تهران
3- دانشگاه علوم پزشکی تهران
4- دانشگاه علوم پزشکی ایران
5- دانشگاه علوم پزشکی تهران
6- دانشگاه علوم پزشکی تهران
7- دانشگاه علوم پزشکی تهران
Keywords :
Tibial Plateau Fracture،Medical Image Segmentation،Swin-Unet،X-ray Imaging،Deep Learning
Abstract :
Tibial plateau fractures (TPFs), which account for approximately 1% of all bone fractures, represent a complex subset of knee injuries with significant clinical implications if not accurately diagnosed and managed. The accurate diagnosis of TPFs from radiographs is challenged by subtle fracture lines and significant inter-observer variability in manual segmentation. To address these limitations, this study evaluates the performance of a Transformer-based deep learning model, Swin-Unet, for automated and precise tibial segmentation. A retrospective dataset comprising 958 anterior-posterior and lateral radiographs from 220 patients with TPFs was curated. Ground truth masks of the tibia bone were manually annotated and validated through a multi-stage review by orthopedic surgeons. Following preprocessing steps, including contrast enhancement with Contrast Limited Adaptive Histogram Equalization (CLAHE), a 2D Swin-Unet architecture featuring patch-based self-attention mechanisms was trained. The optimized Swin-Unet model demonstrated high fidelity, achieving a mean Dice Similarity Coefficient (DSC) of 0.8314, a mean Intersection over Union (IoU) of 0.7374, and an overall accuracy of 0.9735 on the validation set. Qualitative analysis confirmed the model's ability to accurately delineate tibial boundaries. In conclusion, this study validates the Swin-Unet model as a robust and efficient framework for automated tibial segmentation. By mitigating the challenges of manual delineation, this approach holds significant promise for improving the consistency of orthopedic diagnostic workflows. It serves as a foundation for AI-driven clinical decision support in musculoskeletal imaging.
Papers List
List of archived papers
Accurate Brain Vessel Segmentation in T1-Weighted MRI based on UNETR: Improving Neurosurgical Planning
Fatemeh Gholizadeh - Mahdiyeh Rahmani - Ahmad Pour-Rashidi - Ebrahim Najafzadeh - Parastoo Farnia - Alireza Ahmadian
Perfluorocarbon-Based Oxygenation Systems: From Foundational Principles to Revolutionary Applications in Cancer Therapy and Tissue Engineering
Gity Mirzaei - Zeinab Mazloumi - Ali Baradar Khoshfetrat
مدل های نوین بودجه ریزی عملیاتی و نقش آنها در بهبود عملکرد مالی بانک ها
بهارک یادگار جمشیدی - مبینا مولایی
تقویت عضلات چهار سر ران و اصلاح الگوهای حرکتی با استفاده از بیوفیدبک الکترومایوگرافی در بیماران مبتلا به مالتیپل اسکلروزیس (MS)
مهدی میری - احسان تهامی - گلاره ویسی
EEG-based Schizophrenia Detection Using Spectral, Entropy, and Graph Connectivity Features with Machine Learning
Nazila Ahmadi Daryakenari - Seyed Kamaledin Setarehdan
Recent Advances and Open Challenges in Explainable AI for Deep Learning-based Recommender Systems
Narjes Badpar - Azita Shirazipour - Seyed Javad Mirabedini
رابطه سیاست پولی و ورشکستگی شرکت با فرار مالیاتی
صفیه سلیمان نژاد - امید پایدار خیابانی - احمد شاهی - محمد هاشم نژاد سراجه لو
مطالعه مروری طراحی و ساخت نانوحاملهای هوشمند برای تحویل هدفمند داروهای ضد سرطان به تومورهای لوزالمعده
ایدا احمدی - ابوبکر سوری - جعفرصادق مقدس
بررسی تاثیر اندازه شرکت بر رابطه حاکمیت شرکتی خوب و عملکرد شرکت
یعقوب اقدم مزرعه - اشرف عارف نژاد
Evaluating and Comparing Artificial Intelligence Tools in Solving Mathematical Problems
Marziyeh Felahat - Hossein Gholamalinejad
more
Samin Hamayesh - Version 42.5.2