0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Automated Tibial Bone Segmentation using 2D Swin-Unet on Knee X-ray Images
Authors :
Ali Kazemi
1
Abolfazl Zamanirad
2
Soodabeh Esfandiary
3
Ebrahim Najafzadeh
4
Mohammad Hossein Nabian
5
Parastoo Farnia
6
Alireza Ahmadian
7
1- دانشگاه علوم پزشکی تهران
2- دانشگاه علوم پزشکی تهران
3- دانشگاه علوم پزشکی تهران
4- دانشگاه علوم پزشکی ایران
5- دانشگاه علوم پزشکی تهران
6- دانشگاه علوم پزشکی تهران
7- دانشگاه علوم پزشکی تهران
Keywords :
Tibial Plateau Fracture،Medical Image Segmentation،Swin-Unet،X-ray Imaging،Deep Learning
Abstract :
Tibial plateau fractures (TPFs), which account for approximately 1% of all bone fractures, represent a complex subset of knee injuries with significant clinical implications if not accurately diagnosed and managed. The accurate diagnosis of TPFs from radiographs is challenged by subtle fracture lines and significant inter-observer variability in manual segmentation. To address these limitations, this study evaluates the performance of a Transformer-based deep learning model, Swin-Unet, for automated and precise tibial segmentation. A retrospective dataset comprising 958 anterior-posterior and lateral radiographs from 220 patients with TPFs was curated. Ground truth masks of the tibia bone were manually annotated and validated through a multi-stage review by orthopedic surgeons. Following preprocessing steps, including contrast enhancement with Contrast Limited Adaptive Histogram Equalization (CLAHE), a 2D Swin-Unet architecture featuring patch-based self-attention mechanisms was trained. The optimized Swin-Unet model demonstrated high fidelity, achieving a mean Dice Similarity Coefficient (DSC) of 0.8314, a mean Intersection over Union (IoU) of 0.7374, and an overall accuracy of 0.9735 on the validation set. Qualitative analysis confirmed the model's ability to accurately delineate tibial boundaries. In conclusion, this study validates the Swin-Unet model as a robust and efficient framework for automated tibial segmentation. By mitigating the challenges of manual delineation, this approach holds significant promise for improving the consistency of orthopedic diagnostic workflows. It serves as a foundation for AI-driven clinical decision support in musculoskeletal imaging.
Papers List
List of archived papers
Fused Deposition Modeling in Bone Tissue Engineering: A Comprehensive Review
Parsa Doaguie - Shima Mirzaie Parsa
بررسی تأثیر اطلاعات محیطی شرکت و ریسک عدم بازپرداخت بدهیها بر ریسک سقوط قیمت سهام با توجه به نقش تعدیلگر بحران کمآبی
زهره حاجیها - شهرام کامکار
مروری بر مراحل اصلی توسعه مدلهای زبانی در هوش مصنوعی مولد
زهرا روزبهانی
Effects of Athletic Status on Plantar Pressure Distribution and Biomechanical Foot Health in Children and Adolescents
Amin Partovi fard - Mahmoodreza Azghani - Sadra Jalalli - Elham Hazrati - Samin Asghari
An Automatic Pipeline for Simultaneous EEG-fMRI Artifact-removal (SEFA)
Farid Hosseinzadeh - Amin Mohammad Mohammadi - Mehrdad Anvarifard - ُSasan Keshavarz - Elias Ebrahimzadeh - Hamid Soltanian-Zadeh
Backward Walking Under Dual-Task Conditions Among Young Adults: A Potential Tool for Early Detection of Gait Instability and Fall Risk
Zahra Ouni - Hassan Khoudeh - Mina Niknam - Fariborz Rahimi
تأثیر تحول دیجیتال بر ساختار و فرآیندهای حسابداری و مالی
سید جبار عالی نژاد - سید محمد عالی نژاد - حسن هاتف
کاربرد هوش مصنوعی در ایجاد شبکه های صنعتی تولیدکنندگان قطعات خودرو
بهاره رضاپور - حسین بوداقی خواجه نوبر
HEALTH: Hyperbolic Embedding and Acoustic-based Learning for Topological Hierarchies in Parkinson’s Disease
Saghar Shafaati - S. Hossein Erfani
طبقه بندی بیماران پارکینسون و افراد سالم با بهره گیری از ویژگیهای غیرخطی و الگوریتم های یادگیری ماشین
محمد جواد عبدی - پریا شکری - امیرحسین تجرد - تانیا حسین خانی - اصغر زارعی
more
Samin Hamayesh - Version 42.5.2