0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Automated Tibial Bone Segmentation using 2D Swin-Unet on Knee X-ray Images
Authors :
Ali Kazemi
1
Abolfazl Zamanirad
2
Soodabeh Esfandiary
3
Ebrahim Najafzadeh
4
Mohammad Hossein Nabian
5
Parastoo Farnia
6
Alireza Ahmadian
7
1- دانشگاه علوم پزشکی تهران
2- دانشگاه علوم پزشکی تهران
3- دانشگاه علوم پزشکی تهران
4- دانشگاه علوم پزشکی ایران
5- دانشگاه علوم پزشکی تهران
6- دانشگاه علوم پزشکی تهران
7- دانشگاه علوم پزشکی تهران
Keywords :
Tibial Plateau Fracture،Medical Image Segmentation،Swin-Unet،X-ray Imaging،Deep Learning
Abstract :
Tibial plateau fractures (TPFs), which account for approximately 1% of all bone fractures, represent a complex subset of knee injuries with significant clinical implications if not accurately diagnosed and managed. The accurate diagnosis of TPFs from radiographs is challenged by subtle fracture lines and significant inter-observer variability in manual segmentation. To address these limitations, this study evaluates the performance of a Transformer-based deep learning model, Swin-Unet, for automated and precise tibial segmentation. A retrospective dataset comprising 958 anterior-posterior and lateral radiographs from 220 patients with TPFs was curated. Ground truth masks of the tibia bone were manually annotated and validated through a multi-stage review by orthopedic surgeons. Following preprocessing steps, including contrast enhancement with Contrast Limited Adaptive Histogram Equalization (CLAHE), a 2D Swin-Unet architecture featuring patch-based self-attention mechanisms was trained. The optimized Swin-Unet model demonstrated high fidelity, achieving a mean Dice Similarity Coefficient (DSC) of 0.8314, a mean Intersection over Union (IoU) of 0.7374, and an overall accuracy of 0.9735 on the validation set. Qualitative analysis confirmed the model's ability to accurately delineate tibial boundaries. In conclusion, this study validates the Swin-Unet model as a robust and efficient framework for automated tibial segmentation. By mitigating the challenges of manual delineation, this approach holds significant promise for improving the consistency of orthopedic diagnostic workflows. It serves as a foundation for AI-driven clinical decision support in musculoskeletal imaging.
Papers List
List of archived papers
A Multi-Stage Ranking Pipeline for High-Precision Medical Information Retrieval
Asa Shabanian - Alireza Asl Nemati - Morteza Mohammadi Zanjireh
Shape Memory Polymer-Based Scaffolds for Bone Tissue Engineering
Farzad Fereidani Mohammadi - Zahra Mohammadi
بهبود عملکرد سیستمهای شناسایی بدافزار با تلفیق شبکههای عصبی کانولوشن و الگوریتم جنگل تصادفی
بهزاد شاه پسندی - مجید مزینانی
Multiclass ICU Length-of-Stay Prediction Using Tree-Based Machine Learning Techniques
Mahyar Mohammadian - Somayeh Afrasiabi
تاثیر استقلال کمیته های حسابرسی بر محتوای اطلاعاتی اعلان سود با نقش کیفیت حاکمیت شرکتی در بورس اوراق بهادار تهران
بهزاد مظفری - هاتف ملازاده - رضا عشقی
بررسی و تحلیل عملکرد در زمینه توازن بار ترافیکی برای رایانش ابری
فروزان هاشمی - غلامرضا احمدی
Super-Resolution Generative Adversarial Network for Photothermal Optical Coherence Tomography Signal Enhancement
Amirhossein Osooli - Mohammadhossein Salimi
تاثیر ارتباطات سیاسی و فرصت های سرمایه گذاری بر اجتناب مالیاتی
بیتا دلنواز - امیرحسین قوچی - مهنا پیرایه جو - الهه صفری
ENHANCING POPULATION DIVERSITY AND OPTIMIZATION EFFICIENCY IN CAT SWARM OPTIMIZATION USING A FUZZY CONTROLLER
Seyede maryam Rezaei - Reza Boostani
مدل ترکیبی مبتنی بر DenseNet، الگوریتم ژنتیک و GAN برای تشخیص آلزایمر از تصاویر MRI
محمد قنبری صباغ - محسن کرمی طلایی
more
Samin Hamayesh - Version 42.4.1