0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
HEALTH: Hyperbolic Embedding and Acoustic-based Learning for Topological Hierarchies in Parkinson’s Disease
Authors :
Saghar Shafaati
1
S. Hossein Erfani
2
1- Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
2- Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
Keywords :
Parkinson’s disease،Hyperbolic embedding،Acoustic biomarkers،Explainable AI،Disease progression modeling
Abstract :
Parkinson's disease (PD) is a neurodegenerative disorder characterized by heterogeneous motor and non-motor features complicating early diagnosis and individualized monitoring. Recent reports have identified acoustic biomarkers to be non-invasive prodromal PD predictors, but classical modeling approaches often fail to capture the complex, hierarchical nature of disease progression. This study introduces HEALTH (Hyperbolic Embedding and Acoustic-based Learning for Topological Hierarchies), a novel computational framework that integrates graph-based similarity modeling, hyperbolic geometry, unsupervised clustering, and explainable supervised classification to characterize dysarthric speech patterns in PD. Sustained phonation recordings from participants were preprocessed and embedded in a two-dimensional Poincaré disk, wherein hyperbolic distances reflected latent acoustic dissimilarities. The embedding optimization achieved a ~95% reduction in reconstruction loss, with silhouette coefficients stabilizing near 0.44, indicating robust cluster separation. SHAP analysis identified pitch entropy, amplitude variability, and frequency-related measures as principal determinants of classification outcomes, supporting the clinical interpretability of the model. Comparative evaluation demonstrated that HEALTH outperforms traditional Euclidean approaches in both stratification and explainability. This work underscores the potential of hyperbolic embeddings as scalable, interpretable tools for precision monitoring of neurodegenerative disease and contributes a reproducible methodology to advance non-invasive, data-driven diagnostics in PD.
Papers List
List of archived papers
یک سامانه هوشمند پشتیبان تصمیم مبتنی بر چندعامل برای طبقهبندی انواع کسبوکار
حسن ضیافت
Phase-Specific Analysis of Arm–Leg Load Sharing in Exoskeleton-Assisted Gait Using Biomechanical Indices
Milad Hosseini - Negin Nasirian - Saeed Behzadipour
تاثیر قابلیت مقایسه صورتهای مالی بر مربوط بودن اطلاعات حسابداری
محمد فرجی بنائی - نیما تمجیدی فر - امیرحسین قوچی
High-throughput microfluidic electroporation system using 3D-hydrodynamic focusing
Zohre Nazemi Dehkordi - Ali Abouei Mehrizi
نقش مدیران مستقل در بهبود حاکمیت شرکتی
رعنا شهدآور - آیسان صدقی - المیرا ناصری
Simulation and evaluation of the impact of magnetic source geometry on mechanical stress and magnetic flux distribution in cancerous tumors
Alireza Heydari - Mahdi Halabian - Borhan Beigzadeh - Majid Siavashi
سیاستهای پولی، تغییرات نرخ ارز، تصمیمات تودهوار سهامداران در چارچوب الزامات قانونی بازار سرمایه
عظیم رضوی مجارشین
GPU-Accelerated GRAPPA: A Fast Implementation Using PyTorch for MRI Reconstruction
Mehrdad Anvari-Fard - Mahdi Bazargani - Mohammad Javad Heidari - Hamid Soltanian-Zadeh
Implementation of Anisotropic Hyperelastic Materials in NL-SBFEM Framework: The HGO Model
Seyed Sadjad Abedi-Shahri - Farzan Ghalichi - Iman Zoljanahi Oscui
تحلیل اثر انشعاب فیبر بر خواص مکانیکی تاندون در محل اتصال به استخوان
فاطمه شهماری میکائیل درسی - هادی تقی زاده
more
Samin Hamayesh - Version 42.4.1