0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
HEALTH: Hyperbolic Embedding and Acoustic-based Learning for Topological Hierarchies in Parkinson’s Disease
Authors :
Saghar Shafaati
1
S. Hossein Erfani
2
1- Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
2- Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
Keywords :
Parkinson’s disease،Hyperbolic embedding،Acoustic biomarkers،Explainable AI،Disease progression modeling
Abstract :
Parkinson's disease (PD) is a neurodegenerative disorder characterized by heterogeneous motor and non-motor features complicating early diagnosis and individualized monitoring. Recent reports have identified acoustic biomarkers to be non-invasive prodromal PD predictors, but classical modeling approaches often fail to capture the complex, hierarchical nature of disease progression. This study introduces HEALTH (Hyperbolic Embedding and Acoustic-based Learning for Topological Hierarchies), a novel computational framework that integrates graph-based similarity modeling, hyperbolic geometry, unsupervised clustering, and explainable supervised classification to characterize dysarthric speech patterns in PD. Sustained phonation recordings from participants were preprocessed and embedded in a two-dimensional Poincaré disk, wherein hyperbolic distances reflected latent acoustic dissimilarities. The embedding optimization achieved a ~95% reduction in reconstruction loss, with silhouette coefficients stabilizing near 0.44, indicating robust cluster separation. SHAP analysis identified pitch entropy, amplitude variability, and frequency-related measures as principal determinants of classification outcomes, supporting the clinical interpretability of the model. Comparative evaluation demonstrated that HEALTH outperforms traditional Euclidean approaches in both stratification and explainability. This work underscores the potential of hyperbolic embeddings as scalable, interpretable tools for precision monitoring of neurodegenerative disease and contributes a reproducible methodology to advance non-invasive, data-driven diagnostics in PD.
Papers List
List of archived papers
Diagnosis of Multiple Sclerosis Using Recurrence Plot of EEG
Neda Baghestani - Amin Janghorbani
ارزیابی ساختار بازار حسابرسی در ایجاد ارزش افزوده اقتصادی در صنعت فولاد
کریم ستاری - محمدرضا عباسی استمال
DMAEMA-based photocrosslinkable hydrogels with injectable capabilities for smart drug delivery systems in implant infections
Fatemeh Haj Sadeghi - Vahid Haddadi Asl - Hanie Ahmadi
Finite Element Analysis of Polyoxymethylene Hemostatic Clips: Stress Distribution and Hinge Geometry Optimization
Parastoo Kamali - Hadi Taghizadeh
Static and Dynamic WPLI on Stressful Scenarios: an EEG Study
Nasrin Dehghani - Negin Joghataei - Zahra Ghanbari - Mohammad Hassan Moradi
بررسی رابطه بین توانایی مدیران و تاخیر قیمت سهام شرکتهای پذیرفتهشده در بورس اوراق بهادار تهران
حمیدرضا عزیزی
EEG-Based Classification of Schizophrenia and Healthy Controls Subjects Using Statistical and Nonlinear Features with Emphasis on Fuzzy Entropy
Mahdiyeh Tofighi Milani - Sina Shamekhi - Asghar Zarei
پردازش پیشرفته تصاویر برای شناسایی نوع سلول خونی: قطعهبندی، استخراج ویژگی و مدل گراف بر پایه نمونه گیری و تجمیع
حوریا خرمکی - سید مهدی صالحی - مهدیه قاسمی
A Telemedicine Approach to Therapist-Free VR Exposure Therapy for Acrophobia: A pilot study
Arya Gholipoor Hanizi - Samaneh Minakhani - Poorya Gholipoor
Fixed-Frequency Impedimetric Detection of Sickle Cells Using Interdigitated Electrodes
َArezoo Savlani - Mobina Ghanbari - Mohammadjavad Bouloorchi Tabalvandi - Majid Badieirostami
more
Samin Hamayesh - Version 42.5.2