0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
EEG-Based Classification of Schizophrenia and Healthy Controls Subjects Using Statistical and Nonlinear Features with Emphasis on Fuzzy Entropy
Authors :
Mahdiyeh Tofighi Milani
1
Sina Shamekhi
2
Asghar Zarei
3
1- دانشگاه صنعتی تبریز(سهند)
2- دانشگاه صنعتی تبریز(سهند)
3- دانشگاه صنعتی تبریز(سهند)
Keywords :
Schizophrenia،Electroencephalogram،Machine Learning،Fuzzy Entropy
Abstract :
Schizophrenia is a severe mental disorder that frequently causes the patient to have numerous problems with normal daily activities, and still, doctors struggle to accurately diagnose it in the early stages. Brain imaging and clinical tests, even if they are sometimes capable of achieving the goal, are often a lengthy procedure, expensive, and can also be somewhat uncomfortable for patients. New scientific work seeks to come up with a less intrusive and cheaper method, which will include the use of the EEG signal and the ML algorithm in identifying abnormalities of the schizophrenic patients as compared with the healthy ones. At first, the Fast Fourier Transform (FFT) was used to decompose the EEG signal into multiple sub-bands of frequency, and it was decided to extract a set of features from each sub-band, where the features included the statistical and nonlinear features - kurtosis, skewness, Shannon entropy, fuzzy entropy, mobility, and complexity. Subsequently, the ReliefF algorithm was utilized for the selection of features, and the significant features thus extracted were used as input for a number of classifiers, including the k-nearest neighbors (KNN), linear support vector machine (SVM), and the random forest (RF), to name but a few. The functional capabilities of the designed system were verified on a genuine EEG dataset that contains recorded signals from teenage schizophrenia patients as well as from healthy subjects. Random forest was identified as the most effective one among the various implemented classifiers, as it achieved the highest performance with an average accuracy of 97.69%. Also, fuzzy entropy was identified to be a constantly discriminative feature, implying it could serve as a sound biomarker for the differentiation of schizophrenia from healthy subjects by utilizing EEG signals.
Papers List
List of archived papers
A Computational Model of Phase-Delayed Balanced Biphasic Deep Brain Stimulation for Essential Tremor in a Cerebellar-Basal Ganglia-Thalamocortical Network
Shabnam Andalibi Miandoab - Nazlar Ghasemzadeh
مروری جامع بر اجتماعی شدن مالی
علیرضا هوشمندی - امید پورحیدری - امیرحسین تائبی نقندری
بررسی جامع تاثیر فناوریهای نوین بر حسابداری
میروحید پورربی - علی اصغر اکبری
بررسی تاثیر معیارهای قرارداد هوشمند بر عملکرد زنجیره تامین پایدار
محمد علیمحمدی - امیر نجفی
حریم خصوصی کاربران در مدل های زبانی بزرگ
آرمان محبعلی - محمد عادلی نیا
کاربرد علم داده در مهندسی کامپیوتر : بهینه سازی مصرف انرژی در دیتاسنترها در باب تحلیل داده
مهدی بشیرزاده
Mapping Epileptic Networks: IED-Triggered Hemodynamic Changes Identified via Simultaneous EEG-fMRI Recordings
Elias Ebrahimzadeh - Mostafa Asgarinejad - Melika Akbarimehr - Hamid Soltanian-Zadeh
کاربرد هوش مصنوعی برای پیشبینی تقاضا در مدیریت زنجیره تامین
امیرمحمد ایل غمی
Detecting MDD based on EEG signals: Frontal or Temporal Region
Ali Zeraatkar - Amirreza Ahmadi - Saeed Yarmohammdi - Reza Rostami
تاثیر پیچیدگی وظیفه بر عملکرد حسابرسان با تأکید بر جنبه های فردی و معنوی
حیدر محمدزاده سالطه - هانیه کریم زاده
more
Samin Hamayesh - Version 42.5.2