0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
EEG-Based Classification of Schizophrenia and Healthy Controls Subjects Using Statistical and Nonlinear Features with Emphasis on Fuzzy Entropy
Authors :
Mahdiyeh Tofighi Milani
1
Sina Shamekhi
2
Asghar Zarei
3
1- دانشگاه صنعتی تبریز(سهند)
2- دانشگاه صنعتی تبریز(سهند)
3- دانشگاه صنعتی تبریز(سهند)
Keywords :
Schizophrenia،Electroencephalogram،Machine Learning،Fuzzy Entropy
Abstract :
Schizophrenia is a severe mental disorder that frequently causes the patient to have numerous problems with normal daily activities, and still, doctors struggle to accurately diagnose it in the early stages. Brain imaging and clinical tests, even if they are sometimes capable of achieving the goal, are often a lengthy procedure, expensive, and can also be somewhat uncomfortable for patients. New scientific work seeks to come up with a less intrusive and cheaper method, which will include the use of the EEG signal and the ML algorithm in identifying abnormalities of the schizophrenic patients as compared with the healthy ones. At first, the Fast Fourier Transform (FFT) was used to decompose the EEG signal into multiple sub-bands of frequency, and it was decided to extract a set of features from each sub-band, where the features included the statistical and nonlinear features - kurtosis, skewness, Shannon entropy, fuzzy entropy, mobility, and complexity. Subsequently, the ReliefF algorithm was utilized for the selection of features, and the significant features thus extracted were used as input for a number of classifiers, including the k-nearest neighbors (KNN), linear support vector machine (SVM), and the random forest (RF), to name but a few. The functional capabilities of the designed system were verified on a genuine EEG dataset that contains recorded signals from teenage schizophrenia patients as well as from healthy subjects. Random forest was identified as the most effective one among the various implemented classifiers, as it achieved the highest performance with an average accuracy of 97.69%. Also, fuzzy entropy was identified to be a constantly discriminative feature, implying it could serve as a sound biomarker for the differentiation of schizophrenia from healthy subjects by utilizing EEG signals.
Papers List
List of archived papers
Patient-Specific TMJ Implants: A Finite Element Study on Placement and Material Effects
Aryana Tavakoulnia - Mohadese Rajaeirad - Nima Jamshidi - Sandipan Roy
توربین بادی محور عمودی بهینهشده برای محیطهای شهری
سید جواد روده چی تبریزی - ثمر گلدوز
Chondrocyte-Imprinted Substrates: Promoting MSC Chondrogenesis and Regulating Inflammatory Gene Expression
Parisa Madani - Sara Derhanbakhsh - Nasrin Salehi - Farzaneh Safshekan - Javad Mohammadi - Shahin Bonakdar
رویکردهای مدیریت مالی با استفاده از فناوریهای هوشمند
حسن هاتف - سید محمد عالی نژاد - سید جبار عالی نژاد
مدل ترکیبی مبتنی بر DenseNet، الگوریتم ژنتیک و GAN برای تشخیص آلزایمر از تصاویر MRI
محمد قنبری صباغ - محسن کرمی طلایی
تاثیر ویژگی های کمیته حسابرسی و حسابرس داخلی بر به موقع بودن گزارشگری مالی
غلامعلی شریفی
Application of Attention Mechanisms in Deep Learning Models for COVID-19 Detection and Classification from Medical Images: A Systematic Review
Jafar Abdollahi - Babak Nouri-Moghaddam - Abbas Mirzaei
شبیهسازی المان محدود رفتار ناهمسانگرد لیگامان پریودنتال بر اساس توزیع سهبعدی فیبرهای کلاژن
محیا بناپور نجاری - علی ولایی - هادی تقیزاده
بررسی دیدگاه ها و سیر تاریخی پیرامون حسابداری دارایی های موروثی
فاطمه رفیعی - مهدی ناظمی اردکانی
تحلیل نقش رایانش ابری در چابکی زنجیره تأمین
دکتر غلامرضا جمالی - توحید بهزادی فرد - حسن ایزدی فر
more
Samin Hamayesh - Version 42.4.1