0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Semi-Automatic Multi-Stage Artifact Removal in EEG During Subthreshold GVS: A Machine Learning Approach for Neuromodulation Studies
Authors :
Mahdi Babaei
1
Sepideh Hajipour Sardouie
2
Martin Keung
3
Varsha Sreenivasan
4
Hanaa Diab
5
Maryam S. Mirian
6
Martin J. McKeown
7
1- دانشکده برقوکامپیوتر، دانشگاه تهران
2- University of British Columbia
3- University of British Columbia
4- University of British Columbia
5- University of British Columbia
6- University of British Columbia
7- University of British Columbia
Keywords :
Parkinson’s disease،Galvanic vestibular stimulation،Neuromodulation،Artifact removal،EEG،biomarkers،Machine learning
Abstract :
Parkinson’s disease (PD) is characterized by widespread disruptions in neural oscillations and network dynamics, which can be captured through resting-state EEG biomarkers. Galvanic vestibular stimulation (GVS) has emerged as a promising noninvasive neuromodulation technique to modulate these neural patterns. However, EEG recordings during GVS are severely contaminated by high-amplitude stimulation artifacts, especially when exploring a wide range of stimulation protocols. In this study, we designed a data acquisition protocol involving 304 distinct subthreshold GVS waveforms, each with a unique temporal profile, to investigate their effects on brain activity. These stimuli induced strong artifacts in the EEG signal, particularly during the stimulation interval. To recover clean EEG signals, we developed a multi-stage preprocessing pipeline combining regression-based artifact suppression, canonical correlation analysis (CCA), and independent component analysis (ICA), supported by machine learning classifiers for automatic detection and removal of GVS, EOG, and EMG artifacts. We evaluated the effectiveness of this pipeline through classification of EEG signals from PD patients and healthy controls across three temporal segments: pre-stimulation (Pre-stim), stimulation (Stim), and post-stimulation (Post-stim). Despite the intense artifacts in the Stim interval, classification accuracy reached 82.46%, closely matching the performance in Pre-stim (85.06%) and Post-stim (91.67%) intervals. This confirms that the artifact removal process successfully preserved disease-relevant neural information even during active stimulation. Beyond classification, we conducted additional evaluations including temporal consistency analysis of biomarkers, correlation of model coefficients across intervals, and visual inspection of signal quality. These assessments demonstrated that the cleaned EEG signals retained physiologically meaningful patterns and stable biomarker profiles across time. Our findings show that EEG signals recorded during GVS can be reliably cleaned and analyzed, enabling rapid screening of stimulation protocols and paving the way for personalized neuromodulation strategies in Parkinson’s disease.
Papers List
List of archived papers
شبیه سازی افزایش نفوذ دارو در لوله مویرگی با غشا نفوذپذیر به کمک اثر نانوذرات مغناطیسی
پریماه سلیمی - هامون پورمیرزاآقا - منصور امیری دوگاهه - علی وظیفه دوست صالح - سیده سوده جهانی
تأثیر بالکچین بر امنیت و شفافیت در تراکنش های مال ی: نوآوری و چالشها
مهسا رحیمی - مصطفی جوینده
اتوماسیون هوش مصنوعی کلید موفقیت در آینده تولید
مهدی بشیرزاده
تاثیر ارتباطات سیاسی و فرصت های سرمایه گذاری بر اجتناب مالیاتی
بیتا دلنواز - امیرحسین قوچی - مهنا پیرایه جو - الهه صفری
Recovery of Hand Motor Function in Children with Hemiparetic Cerebral Palsy using an Interactive Computer Game Combined with Mechanoreceptor Stimulation: A Pilot Study
Mobina Ramezani - Shahed Salehzehi - Parisa Hosseini - Zahra Alizadeh Sarborj - Ghazal Mohammadzadeh - Hamid Reza Kobravi - Narges Hashemi - Mehran Beiraghi Toosi - Javad Akhondian
ارزیابی ساختار بازار حسابرسی در ایجاد ارزش افزوده اقتصادی در صنعت فولاد
کریم ستاری - محمدرضا عباسی استمال
هوش مصنوعی و توسعه مهارت های آموزشی در دانشگاهها و مؤسسات آموزش عالی
فاطمه خسروپرویز
آمایش گردشگری مناطق ایران و هوش مصنوعی
محمدعلی فیض پور - مهدیه پیروی
تاثیر رویکرد هوش مصنوعی بر صنعت گردشگری جوامع مختلف ایرانی
حسین بوذری
Freeze-Dried Oxidized Alginate–Gelatin Scaffold Coated with Reduced Graphene Oxide for Bone Tissue Engineering
Mohsen Aghababaei Tafreshi - Sameereh Hashemi-Najafabadi - Nafiseh Baheiraei
more
Samin Hamayesh - Version 42.5.2