0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Hierarchical STFT based Transformer for Causality discovery
Authors :
Sahar Semsarha
1
Mohammad bagher Shamsolahi
2
1- sharif university of technology
2- sharif university of techonolgy
Keywords :
EEG،causal discovery،Transformers،connectivity،time-frequency analysis
Abstract :
Abstract— electroencephalogram (EEG) signal analysis is crucial for understanding brain dynamics and connectivity. Traditional approaches such as Granger causality, Partial Directed Coherence (PDC), and Directed Transfer Function (DTF) rely on linear autoregressive assumptions and often fail to capture nonlinear dependencies. At the same time, deep learning models including CNNs, RNNs, and Transformers have achieved strong results in EEG decoding tasks, yet these methods generally focus on correlation rather than causation. To address these limitations, we propose a Hierarchical Causal-STFT Transformer (H-STFT-T), a novel framework that integrates causal short-time Fourier transform (STFT) representations with a multi-level hierarchical Transformer architecture. By enforcing causality in the spectral domain and incorporating intra-patch, inter-patch, and inter-channel attention modules, our model prevents leakage, learns temporal delays (lags), and generates directed connectivity graphs. We evaluate H-STFT-T on both synthetic datasets and real EEG benchmarks. Experimental results demonstrate that our method achieves superior accuracy in recovering ground-truth causal links and lag structures, outperforming classical approaches (Granger, PDC, DTF), deep non-causal baselines (GCN, GAT, Transformer), and causal discovery methods (PCMCI, Transfer Entropy, LiNGAM).
Papers List
List of archived papers
هوش مصنوعی در ارزیابی عملکرد کارکنان دولت: چالشها، فرصتها و پیامدهای اخلاقی
حسین بوداقی خواجهءنوبر - بهارک یادگار جمشیدی
Recovery of Hand Motor Function in Children with Hemiparetic Cerebral Palsy using an Interactive Computer Game Combined with Mechanoreceptor Stimulation: A Pilot Study
Mobina Ramezani - Shahed Salehzehi - Parisa Hosseini - Zahra Alizadeh Sarborj - Ghazal Mohammadzadeh - Hamid Reza Kobravi - Narges Hashemi - Mehran Beiraghi Toosi - Javad Akhondian
بکارگیری فن آفرینی های پیشرفته جهت شناسایی خانه های خالی با اهداف مالیات گیری
جابر خورشیدسوار - جمال برزگری خانقاه
Gravity-Directed Growth of ZnO Nanorods: Morphological Control via Chemical Bath Deposition
Masoud Ghashami - Melisa Daryayi - Mohammad Abdolahad
Toward Precision Psychiatry: Differentiating Depression and Psychosis Using EEG-Based Machine Learning Models
Vahid Asayesh - Mehdi Dehghani - Majid Torabi - Sepideh Akhtari-Khosroshahi - Maedeh Akhtari-Khosroshahi - Sebelan Daneshvar
GelMA Synthesis and Experimental Challenges
Mohammad Matin Shirzad - Zahra Mohammadi - Shaghayegh Kohzadi
طراحی چارچوب شخصیسازیشده درمان بیماری MS مبتنی بر یادگیری تقویتی عمیق SAC
مریم سبزه یان - محبوبه سبزه یان - امین نوری - ماندانا سادات غفوریان
تأثیر حسابداری رفتاری و روانشناسی مالی بر تصمیم گیریهای مالی و اقتصادی
یاسر رضایی - مینا قنبری
تاثیر تجربه و شایستگی حسابرس بر اثربخشی حسابرسی با نقش میانجی گری توسعه حرفه ای حسابرسان
امین صفری - آرش درخشان مهر - مسعود احمدی منصورآباد
Benchmarking nnU-Net vs. Custom 3D U-Net for Kidney Tumor Segmentation: A Controlled Study on KiTS19 Dataset
Ariya Soleimany - Masoud Noroozi - Mohammad Saber Azimi - Alireza Karimian - Jafar Majidpour - Hossein Arabi
more
Samin Hamayesh - Version 42.4.1