0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Integration of High-Speed AFM Nanomechanical Profiling with Deep Spatiotemporal Learning for Early Response Assessment and Tumor Stage Prediction in Oncolytic Virotherapy
Authors :
َAlireza Haghighatjoo
1
Fatemeh Noori
2
Peyman Afshari Bijarbaneh
3
Seyed Amirhossein Mousavi
4
1- دانشگاه آزاد اسلامی واحد مشهد
2- Genova University , italy
3- Genova University , italy
4- دانشگاه ازاد مشهد
Keywords :
Oncolytic Virotherapy،Atomic Force Microscopy،Early Response Biomarkers،Deep Learning / CNN-LSTM،Nanomechanical Profiling
Abstract :
Oncolytic virotherapy has emerged as a promising therapeutic strategy in oncology, utilizing genetically engineered or naturally occurring viruses to selectively infect, replicate within, and lyse malignant cells while sparing normal tissues. Beyond direct cytolysis, oncolytic viruses stimulate antitumor immunity by releasing tumor-associated antigens and danger signals, thereby initiating systemic immune responses. However, clinical translation is limited by the lack of robust early-stage biomarkers for treatment response assessment and patient stratification. Conventional evaluation methods—imaging, molecular assays, and immunohistochemistry—often provide delayed or indirect feedback, restricting timely therapeutic optimization. Nanomechanical profiling of living cells offers a novel approach for real-time assessment of therapeutic efficacy. Atomic Force Microscopy (AFM) enables label-free, nanoscale measurement of cellular mechanical properties, including stiffness, elasticity, and surface topography, which dynamically change in response to cytoskeletal remodeling and therapeutic interventions. Recent advances in high-speed AFM, coupled with artificial intelligence (AI), allow automated, high-dimensional feature extraction from raw nanomechanical data. Deep learning frameworks, particularly hybrid convolutional neural network (CNN) and long short-term memory (LSTM) architectures, have been shown to accurately classify cancer-related phenotypes and detect extracellular vesicle signatures with AUC values exceeding 0.90. In this study, we present a novel framework combining high-speed AFM with a hybrid CNN–LSTM pipeline to assess early responses to oncolytic virotherapy. Using human tumor cell lines infected with clinically relevant oncolytic viruses (HSV-1, VSV, NDV), we demonstrate that nanomechanical signatures acquired within the first 24 hours reliably distinguish responders from non-responders with >95% accuracy and predict tumor stage with AUC values of 0.90–0.95. Responding cells exhibited early softening, increased nanovibrational activity, and membrane roughening, whereas non-responders displayed attenuated mechanical changes, providing distinct mechanobiological fingerprints of therapeutic efficacy.Our findings establish AFM–AI integration as a rapid, label-free, and non-destructive platform for early response monitoring and tumor stage prediction in oncolytic virotherapy. This approach surpasses conventional methods in speed, sensitivity, and specificity, offering a translational pathway toward real-time patient stratification and personalized treatment adjustments. The study lays the groundwork for further integration of mechanobiology-informed biomarkers with complementary omics and imaging modalities to advance precision oncology workflows.
Papers List
List of archived papers
کاربرد پردازش زبان طبیعی در مدلسازی و پیش بینی رفتار خرید آنلاین مصرف کننده
حمیده سیفی شجاعی - مرتضی محمودزاده - حسین بوداقی خواجه نوبر - ناصر فقهی فرهمند
بررسی تأثیر تعهد استراتژیک و همکاری زنجیره تأمین بر عملکرد عملیاتی و نوآوری
حسن فارسیجانی - ملیکا دهقانی اشکذری
کاربرد هوش مصنوعی در صنعت گردشگری ایران
سید عبدالحمید حسینی - نادیا السادات حسینی
طراحی و پیاده سازی پایگاه داده سامانه فروش برخط
ملیحه نیک سیرت - مریم دادی
Short-term gains vs. long-term Success: Reward strategy design for reinforcement learning in football
Mohammad Pashaei - Amirhossein Tayebi - Hadi Amiri - Ali Fahim
Multifunctional Coatings for Biomedical Alloys: Biocompatibility and Antibacterial Activity of Hydroxyapatite with YSZ and Silver on Nitinol
Mehdi HOSSEINI - Mehdi MOZAMMEL - Milad HOSSEINI - Jafar HKALIL-ALLAFI
تاثیر عدم تقارن اطلاعاتی بر ارتباط بین متنوع سازی شرکتی و مالی سازی شرکت
احمد محمدی - سعید سودی - سونیا کیوان بد
شناسایی پیشرانهای حسابداری مسئولیت اجتماعی شرکتی در ایران: بررسی عوامل مؤثر و چالشها
امیر محبی - فرزین رضایی - مهدی بشکوه - غلامرضا کردستانی
شبیه سازی عددی انقباض بطن راست قلب جنین انسان به روش تعامل سیال و جامد
سیده کیمیا مرتضوی فارسانی - هانیه نیرومند اسکوئی - بهروز جعفرزاده - محمد حسن فردوسی
تبیین روابط بین ،استراتژی مالی رقابتی ، توانمندی های بازاریابی و عملکرد سرمایهگذاری صادراتی با تکیه بر دیدگاه مبتنی بر منابع
حسین بوذری
more
Samin Hamayesh - Version 42.5.2