0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Multi-View 2.5D Attention U-Net with 3D Fusion for Efficient Stroke Lesion Segmentation from T1-Weighted MRI
Authors :
Fatemeh Salahshourinejad
1
Kamran Kazemi
2
Negar Noorizadeh
3
Mohammad Sadegh Helfroush
4
Ardalan Aarabi
5
1- دانشگاه صنعتی شیراز
2- دانشگاه صنعتی شیراز
3- University of Tennessee Health Science Center
4- دانشگاه صنعتی شیراز
5- University of Picardy Jules Verne
Keywords :
Stroke Lesion،MRI،2.5D Segmentation،Deep Learning،Attention mechanism،Multi-view
Abstract :
Accurate segmentation of stroke lesions from Magnetic Resonance Imaging (MRI) scans is critical for clinical decision-making and patient prognosis. However, stroke lesion segmentation from mono-spectral MRI such as T1-weighted (T1w) images suffers from similar gray level characteristics of brain tissues and heterogeneity of lesion properties (e.g., shape and size). Deep learning has become the standard approach for medical image segmentation; however, 2D models lose inter-slice context and 3D models face computational complexity. In this paper, we proposed a multi-view 2.5D model that employed three 2D U-Nets for intra-slice lesion segmentation across axial, coronal, and sagittal views, followed by a 3D convolutional neural network (CNN) to integrate the outputs. The 2D U-Nets incorporated residual blocks in the encoder–decoder and attention blocks in the skip connections, while the 3D CNN with attention mechanisms produced the final segmentation. The proposed model was evaluated on the ATLAS V2.0 dataset for stroke lesion segmentation, achieving a mean Dice score of 0.64±0.27outperforming 2D approaches and comparable with 3D models, while requiring fewer parameters, making it practical for resource-constrained settings.
Papers List
List of archived papers
Experimental and Theoretical Analysis of the Mechanical Performance of 3D-Printed Biomedical Splints Made of PLA/CF with Structural Geometric Variations
ELNAZ ABEDINI - Nima Feizlou
شناسایی و اولویت بندی موانع اجرای حسابداری منابع انسانی بوسیله TOPSIS
حسن پاکی
Optimization of the Mechanical Properties of PVA/Gelatin Hydrogel Reinforced with Polycaprolactone Nanofibers Using the Finite Element Method
Mohadeseh Nazouri - Iman Zoljanahi Oskui - Hadi Taghizadeh
Personalized EEG Source Estimation in a Shape Drawing Task
Zakieh Hassanzadeh - Melisa Daryayi - Navid Entezari - Fariba Bahrami
معرفی معیار کمیسازی الگوهای متیلاسیون DNA در ژنوم
نغمه سادات ناظر کاخکی - نرجس الهدی محمدزاده - محیا مهرمحمدی
Influence of artificial intelligence in the mining industry and its role in the economic development
Parinesa Moshefi
هوش مصنوعی: چالشها، معایب و راهکارهای کاهش مخاطرات
سیدواحد موسوی - رضا رضا رادفر - سعید ستایشی
The Adaptive Approach of Ensemble Deep Learning Model in OCT Image Classification
Hamed Aghapanah Roudsari - Ali Ghaderian - Mrteza Choubin
نوآوری فناورانه در هوش مصنوعی و آینده حرفه حسابداری: بررسی مسیرهای شغلی از جایگزینی تا دگرگونی
شبنم بالازاده قره باغی - سعید مصدق
بررسی ارتباط بین ریسک پذیری شرکت و ضریب واکنش سود در شرکت های پذیرفته شده در بورس اوراق بهادار تهران
حسین بوداقی خواجهءنوبر - مینا محمدی
more
Samin Hamayesh - Version 42.5.2