0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Multi-Objective Optimization of the Impeller of a mini Blood Pump: Balancing Outlet Pressure and Scalar Shear Stress
Authors :
Reza Sahebi-Kuzeh kanan
1
Hanieh Niroomand-oscuii
2
Habib Badri Ghavifekr
3
Farzan Ghalichi
4
1- Tabriz University of Technology
2- Tabriz University of Technology
3- Tabriz University of Technology
4- Tabriz University of Technology
Keywords :
Blood pump،Computational fluid dynamics،Optimization،Response Surface Methodology،Multi-Objective Genetic Algorithm
Abstract :
Cardiovascular diseases are among the leading causes of mortality worldwide, and blood pumps and ventricular assist devices play a key role in advanced care. To overcome limitations of prior studies, namely the small number of geometric parameters and single objective optimization, we present a hybrid framework that integrates response surface methodology, a neural network surrogate, and a multi objective genetic algorithm to design the impeller of a small blood pump at a specified operating point. Fifteen geometric parameters were varied and 290 computational simulations were performed to construct the database and train the surrogate. The optimization objectives were to maximize outlet pressure and to keep the mean scalar shear stress at 50 Pa.Compared with the baseline impeller, the optimized design achieved a 6–7% increase in outlet pressure and about a 15% increase in static head, while the mean wall shear stress decreased by about 17% and the hemolysis index dropped by nearly 50%. The optimized blade reduced high-shear stress near the leading edge, yielded a more uniform shear field, and exhibited smoother pressure growth and weaker jet–wake structures, indicating more uniform blade loading, better pressure recovery, and lower mixing losses. The neural network correctly captured the improvement trends but showed a modest discrepancy: it overestimated outlet pressure by about 13% and underestimated the shear-stress reduction by about 19% relative to simulation-verified values. Overall, the proposed framework simultaneously improves hydraulic performance and hemocompatibility and offers a practical route for multi-objective optimization of small blood-pump impellers.
Papers List
List of archived papers
Recent Advances and Open Challenges in Explainable AI for Deep Learning-based Recommender Systems
Narjes Badpar - Azita Shirazipour - Seyed Javad Mirabedini
بررسی اثرات تعامل و همکاری بین مدیران مالی ارشد شرکتها و مؤسسات حسابرسی بر کیفیت حسابرسی
موسی انصاری - محمد فرهادی مهر
Prediction of cardiac arrhythmia via an improved hierarchical fused fuzzy deep learning
Arman Daliri - Nora Mahdavi
EEG-Based Classification of Schizophrenia and Healthy Controls Subjects Using Statistical and Nonlinear Features with Emphasis on Fuzzy Entropy
Mahdiyeh Tofighi Milani - Sina Shamekhi - Asghar Zarei
شبیهسازی المان محدود رفتار ناهمسانگرد لیگامان پریودنتال بر اساس توزیع سهبعدی فیبرهای کلاژن
محیا بناپور نجاری - علی ولایی - هادی تقیزاده
Impact of Dynamic and Static Sports on Growth and Anthropometric Characteristics (Height, Weight, BMI) in Children and Adolescents
Amin Partovi fard - Mahmoodreza Azghani - Sadra Jalali - Samin Asghari
بهینهسازی ساختار نانوالیافی داربست پلیمری با دندریمر پلی آمیدو آمین برای استفاده در مهندسی بافت عصب
حمید جبار
Classification of Excitatory and Inhibitory Neurons in Animal Data Using Machine Learning and CNN Models
Mahdi Mollaei - Amirhossein Mashghdoust - Ali Khadem
ارائه مدل E-UNETR2D جهت قطعه بندی عروق کرونر از روی تصاویر سی تی آنژیوگرافی
مصطفی رجب زاده - فواد قادری - حمیدرضا پورعلی اکبر - نصرالله مقدم چرکری
بررسی و تحلیل عملکرد در زمینه توازن بار ترافیکی برای رایانش ابری
فروزان هاشمی - غلامرضا احمدی
more
Samin Hamayesh - Version 42.4.1