0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Comparative Assessment of U-Net and Pix2Pix for Applying Direct Attenuation Correction in the Image Domain in 68Ga-PSMA PET/CT Imaging
Authors :
Negin Hamidiyan
1
Hadi Taleshi Ahangari
2
Pardis Ghafarian
3
Hossein Arabi
4
Mohammad Reza Ay
5
1- دانشگاه علوم پزشکی سمنان
2- دانشگاه علوم پزشکی سمنان
3- دانشگاه علوم پزشکی شهید بهشتی
4- Geneva University Hospital
5- دانشگاه علوم پزشکی تهران
Keywords :
Attenuation Correction،PET/CT،PSMA،Deep Learning،U-Net،Pix2Pix
Abstract :
Attenuation correction (AC) is crucial for achieving accurate quantitative positron emission tomography (PET) imaging; however, it remains a challenge in dedicated PET systems that lack simultaneous computed tomography (CT) imaging. In recent years, deep learning (DL) approaches have been explored for this purpose, though direct comparisons between models are still limited. In this study, we directly compared the performance of two widely applied DL architectures, U-Net and Pix2Pix, for direct AC of whole-body 68Ga-PSMA PET images using the same set of 95 patient data sets. For each data set, CT-based attenuation-corrected PET (PET-CTAC) was used as the reference. Quantitative evaluation included mean error (ME) of mean of standardized uptake value (SUVmean), normalized root mean square error (NRMSE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR). Both U-Net and Pix2Pix generated PET images of comparable quality to those from PET-CTAC, but Pix2Pix generally showed better quantitative metrics. Specifically, U-Net achieved ME, NRMSE, SSIM, and PSNR values of 0.037 ± 0.02, 0.006 ± 0.005, 12.88 ± 2.73, and 0.98 ± 0.14, respectively, whereas Pix2Pix achieved 0.015 ± 0.015, 0.005 ± 0.004, 13.93 ± 2.48, and 0.99 ± 0.004. Statistical analysis, using paired t-tests or Wilcoxon signed-rank tests depending on data normality, demonstrated that Pix2Pix produced SUV estimates closer to those of PET-CTAC, with lower bias and variability than U-Net. In conclusion, both DL models enabled direct AC of whole-body 68Ga-PSMA PET, but Pix2Pix provided more accurate and reliable AC when the two models were directly compared, indicating Pix2Pix is the stronger candidate for clinical use in dedicated PET systems without CT imaging.
Papers List
List of archived papers
پیشبینی نمرات دروس دانشگاهی با استفاده از الگوریتم رگرسیون خطی در یادگیری ماشین
سجاد یوسفی - مریم پورنجف - هانیه شیری
Unsupervised Gait Anomaly Detection Using Generative Adversarial Networks: A Feasibility Study
Seyed Hooman Hosseini-Zahraei - Ali Chaibakhsh
شناسایی قدرت پسورد با استفاده از روشهای یادگیری ماشین دسته جمعی
مهناز درودی - سیدحسن مرتضوی زارچ - فاطمه زارع مهرجردی - محسن سرداری زارچی
Grating Lobe Suppression in Sparse Coprime Array Ultrasound Imaging by Null Alignment
Mina Ezati - Vahid AminNilii - Zahra Kavehvash
یک سامانه هوشمند پشتیبان تصمیم مبتنی بر چندعامل برای طبقهبندی انواع کسبوکار
حسن ضیافت
محاسبه نیروی عضلانی اندام تحتانی و نیروی تماسی مفصل زانو در بیماران مبتلا به استئوآرتریت زانو
مجتبی صفری - محمد نجفی آشتیانی - فاطمه السادات علوی
Comparative Evaluation of Feature Selection Techniques for Six-Month Mortality Prediction in Heart Failure Patients
Parsa Haghighatgoo - Somayeh Afrasiabi
Excessive and Variable Center of Mass Motion Characterizes Gait Instability In Women with Obese Knee Osteoarthritis
Diba Chegini - Behzad Yasrebi - Siamak Haghipour - Farhad Farhad Tabatabai Ghomsheh - Aliakbar Pahlevanian
Engagement of shareholders in the company
Mahdi Rastkar Mirzaei - Ramin Saman Azari
Development of an Explainable Random Forest-Based Algorithm for EEG-Based Sleep–Wake Classification Toward Sleep Apnea Detection
Pargol Sharifi - Mohammad Fakharzadeh
more
Samin Hamayesh - Version 42.4.1