0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Comparative Assessment of U-Net and Pix2Pix for Applying Direct Attenuation Correction in the Image Domain in 68Ga-PSMA PET/CT Imaging
Authors :
Negin Hamidiyan
1
Hadi Taleshi Ahangari
2
Pardis Ghafarian
3
Hossein Arabi
4
Mohammad Reza Ay
5
1- دانشگاه علوم پزشکی سمنان
2- دانشگاه علوم پزشکی سمنان
3- دانشگاه علوم پزشکی شهید بهشتی
4- Geneva University Hospital
5- دانشگاه علوم پزشکی تهران
Keywords :
Attenuation Correction،PET/CT،PSMA،Deep Learning،U-Net،Pix2Pix
Abstract :
Attenuation correction (AC) is crucial for achieving accurate quantitative positron emission tomography (PET) imaging; however, it remains a challenge in dedicated PET systems that lack simultaneous computed tomography (CT) imaging. In recent years, deep learning (DL) approaches have been explored for this purpose, though direct comparisons between models are still limited. In this study, we directly compared the performance of two widely applied DL architectures, U-Net and Pix2Pix, for direct AC of whole-body 68Ga-PSMA PET images using the same set of 95 patient data sets. For each data set, CT-based attenuation-corrected PET (PET-CTAC) was used as the reference. Quantitative evaluation included mean error (ME) of mean of standardized uptake value (SUVmean), normalized root mean square error (NRMSE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR). Both U-Net and Pix2Pix generated PET images of comparable quality to those from PET-CTAC, but Pix2Pix generally showed better quantitative metrics. Specifically, U-Net achieved ME, NRMSE, SSIM, and PSNR values of 0.037 ± 0.02, 0.006 ± 0.005, 12.88 ± 2.73, and 0.98 ± 0.14, respectively, whereas Pix2Pix achieved 0.015 ± 0.015, 0.005 ± 0.004, 13.93 ± 2.48, and 0.99 ± 0.004. Statistical analysis, using paired t-tests or Wilcoxon signed-rank tests depending on data normality, demonstrated that Pix2Pix produced SUV estimates closer to those of PET-CTAC, with lower bias and variability than U-Net. In conclusion, both DL models enabled direct AC of whole-body 68Ga-PSMA PET, but Pix2Pix provided more accurate and reliable AC when the two models were directly compared, indicating Pix2Pix is the stronger candidate for clinical use in dedicated PET systems without CT imaging.
Papers List
List of archived papers
Mechanical properties of cancer cells as potential predictive biomarkers
Sayed Reza Ramezani - Afsaneh Mojra
هوش مصنوعی و تحول مدیریت استعداد: گذر از رویکرد های سنتی به عصر تکنولوژی
مهسا کریمی دستنائی - مهدی ندری
A Multi-Stage Ranking Pipeline for High-Precision Medical Information Retrieval
Asa Shabanian - Alireza Asl Nemati - Morteza Mohammadi Zanjireh
شناسایی خودکار حملات روز صفر با رویکرد چندفازی در تولید امضاهای Snort
مازیار کریمی - سعید مهرجو
Application of Nanomaterials in Biomaterials for the Regeneration of Bone and Cartilage Tissues
Behnaz Alijani - Niloufar Kazami
بررسی تاثیر معیارهای قرارداد هوشمند بر عملکرد زنجیره تامین پایدار
محمد علیمحمدی - امیر نجفی
شناسایی اسکولیوز ستون فقرات در تصاویرX-ray با استفاده از MobileNetV2
محمدصادق بابایی
Antimicrobial and Bioactivity Evaluation of Laser-Modified Biodegradable Magnesium Alloy Coated with Chitosan–Graphene Oxide
Seyed Alireza Ensaniat - Ali Safary - Farid Naeimi - Hamid Reza Bakhsheshi Rad - Monireh Ganjali
تأمین مالی از طریق انتشار صکوک – مروری بر مطالعات پیشین
اعظم ولی زاده لاریجانی - سارا رمضانی
پردازش پیشرفته تصاویر برای شناسایی نوع سلول خونی: قطعهبندی، استخراج ویژگی و مدل گراف بر پایه نمونه گیری و تجمیع
حوریا خرمکی - سید مهدی صالحی - مهدیه قاسمی
more
Samin Hamayesh - Version 42.5.2