0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
GPU-Accelerated GRAPPA: A Fast Implementation Using PyTorch for MRI Reconstruction
نویسندگان :
Mehrdad Anvari-Fard
1
Mahdi Bazargani
2
Mohammad Javad Heidari
3
Hamid Soltanian-Zadeh
4
1- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
2- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
3- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
4- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
کلمات کلیدی :
GRAPPA،MRI Reconstruction،Deep Learning،FastMRI،GPU acceleration
چکیده :
GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) is a widely used algorithm in MRI parallel imaging that reconstructs accelerated MRI scans by estimating the unknown phase-encoding lines omitted during k-space data acquisition. Unlike SENSE (Sensitivity Encoding), which operates in the image domain, GRAPPA directly processes k-space data and offers high reconstruction quality without requiring prior knowledge of coil sensitivity maps, making it one of the most commonly used algorithms for MRI reconstruction in clinical practice. Recent MRI reconstruction trends increasingly combine classical methods with deep learning, either as end-to-end trainable networks or hybrid pipelines that use physics-based operators within learning frameworks. GRAPPA is often employed as a preprocessing step before feeding slice information into deep learning models for MRI reconstruction. Despite its effectiveness, GRAPPA is typically a time-consuming part of the training process. In this work, we leverage the GPU capabilities of the PyTorch library and employ several optimization techniques to accelerate the GRAPPA algorithm. Our implementation is compared against the PyGRAPPA repository, developed by Nicholas McKibben, using a subset of the NYU fastMRI dataset. The results demonstrate that our optimized implementation achieves more than 40-fold speedup, which is statistically significant (p < 0.01) while maintaining equivalent image quality with no significant differences in reconstruction metrics (p > 0.05).
لیست مقالات
لیست مقالات بایگانی شده
واحد میکروپلاسما قابلحمل برای بازیافت ضایعات نفتی و تولید انرژی
سید جواد روده چی تبریزی - ثمر گلدوز
A brief review of the applications of stem and mesenchymal cell-derived exosomes for targeted therapy and cancer drug resistance
Laleh Etemad-Ghazani - Zahra Etemadi - Reza Pashaei
تاثیر بعد استراتژی مالی وبعد پاسخگویی برکیفیت خدمات درک شده و خشنودی مشتریان )مورد مطالعه : فروشگاه افق کوروش(
حسین بوذری
بررسی تاثیر مهندسی مالی و مدیریت ریسک بر مدیریت پروژه های ساخت عمرانی
محمد محسنی - جعفر نیکومنش - علی محمدی
بهبود تجربه مشتری در پلتفرمهای ویدئوی درخواستی از طریق راهکارهای هوشمند مبتنی بر داده
احمد سفلایی - محمد یوسفی نژاد عطاری
Short-term gains vs. long-term Success: Reward strategy design for reinforcement learning in football
Mohammad Pashaei - Amirhossein Tayebi - Hadi Amiri - Ali Fahim
EEG-based Schizophrenia Detection Using Spectral, Entropy, and Graph Connectivity Features with Machine Learning
Nazila Ahmadi Daryakenari - Seyed Kamaledin Setarehdan
Cancer-Associated Actin Mutations Enhance Cofilin Binding Affinity: Insights from Steered Molecular Dynamics Simulations
Danial Sedighpour - Farzan Ghalichi - Iman Zoljanahi Oskui
Influence of artificial intelligence in the mining industry and its role in the economic development
Parinesa Moshefi
شناسایی عوامل موثر بر انتخاب حسابرس با تاکید بر عدم اطمینان محیطی
امین بلوری - عیسی ابیضی - محدثه نعیمی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2