0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
EEG-based Schizophrenia Detection Using Spectral, Entropy, and Graph Connectivity Features with Machine Learning
نویسندگان :
Nazila Ahmadi Daryakenari
1
Seyed Kamaledin Setarehdan
2
1- دانشکده برقوکامپیوتر، دانشگاه تهران
2- دانشکده برقوکامپیوتر، دانشگاه تهران
کلمات کلیدی :
Artificial Intelligence،Bandpower،EEG،Functional Connectivity،Graph Features،Machine Learning،Multiscale Permutation Entropy،Schizophrenia Detection
چکیده :
Schizophrenia is a serious mental disorder that changes the way people think, perceive, and manage daily life. Getting the diagnosis right is critical for proper treatment, but in practice it is often difficult. Current evaluations depend mostly on a clinician’s judgment, and the overlap of symptoms with bipolar disorder or major depression makes the task even harder. EEG offers a safe and noninvasive way to study brain activity, yet no single EEG feature has been reliable enough to stand on its own. This makes it important to look at integrative approaches that bring together different aspects of brain dynamics. In this study, we analyzed EEG features to distinguish patients with schizophrenia from healthy controls. Spectral power was measured across δ, θ, α, β, and γ bands. Temporal irregularity was measured with Multiscale Permutation Entropy (MPE), its first application to EEG in schizophrenia. Functional connectivity was estimated with the weighted Phase Lag Index in θ, α, and β bands, followed by the extraction of graph measures including global efficiency, clustering coefficient, characteristic path length, and mean strength. These features were used to train Random Forest, Multi-Layer Perceptron, and Support Vector Machine classifiers. Among the models, Random Forest achieved the most reliable performance, reaching 99.7% accuracy under stratified 5-fold validation and 99.6% under leave-one-subject-out validation. Feature analysis showed that connectivity in θ and α bands contributed most strongly to classification. Topographic maps of θ, α, and β activity also revealed regional group differences. Overall, the results suggest that combining spectral, entropy, and connectivity measures provides a robust framework for EEG-based detection of schizophrenia. Such integrative approaches may support the development of reliable biomarkers and bring EEG closer to practical use in psychiatric care.
لیست مقالات
لیست مقالات بایگانی شده
انتخاب و ترکیب خودکار وظیفه در یادگیری چند وظیفهای
امیر خاکپور
سنجش میزان رضایت مشتریان بانک ملی شهرستان تنکابن با استفاده از مدل MCPDA
محمد اخشابی
Deep Neural Network–Based Adaptive Global Logarithmic Sliding Mode Control for Lower-Limb Rehabilitation Exoskeletons
Masoud Shirzadeh - Ghoncheh Zand - Samim Kamyab
هوش مصنوعی و آینده بشریت با رویکرد مالی و اقتصادی
مهدی زینالی - شبنم بالازاده قره باغی - مهدیه نامی بسیط
Biomechanical Analysis of Blindfold Training for Backward Running in Handball Athletes
Aydin Najipour - Siamak Khorramymehr - Kamran Hassani
A vortex-promoting cross-junction microchannel for efficient hydroporation in immunotherapy applications
Soheil Mahdavi - Zohre Nazemi Dehkordi - Ali Abouei Mehrizi
تحول دیجیتال: چرا شرکت ها در برابر آنچه برای عملکرد پایدار نیاز است مقاومت
رعنا شهدآور - صبا کبیرخو - محدثه پوراصغر - ندا ستاری
هوش مصنوعی و مفاهیم مالی و حسابداری با تاکید برحاکمیت شرکتی
مهدی زینالی - رعنا کمالی
ارتباط بین تضاد نمایندگی و حقالزحمه عادی و غیرعادی حسابرس
فیروز نظاری ابر - رسول برادران حسن زاده - رقیه دهقان
بررسی ارتباط بین کیفیت حسابرسی و عدم شفافیت اطلاعات با هزینه سرمایه
سمیه فرهادی - محمد رستمی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2