0% Complete
English
صفحه اصلی
/
دومین کنفرانس ملی عصر انفجار تکنولوژی؛ هوش مصنوعی، تحولی در صنعت، تجارت و زنجیره تامین و دومین کنفرانس ملی علم داده در کاربردهای مهندسی
Depression detection based on EEG signal analysis utilizing Inter-hemispheric Asymmetry and Correlation Dimension assessment
نویسندگان :
Amirreza Ahmadi
1
Saeid Yarmohammdi
2
Ali Zeraatkar
3
Reza Rostami
4
1- دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران
2- دانشگاه آزاد اسلامی واحد تهران مرکزی
3- University of Victoria
4- دانشگاه تهران
کلمات کلیدی :
EEG،Major Depressive Disorder،Machine Learning،Correlation Dimension،Inter-hemispheric Asymmetry
چکیده :
Depressive disorders represent the most significant health risk among mental illnesses. Diagnosing the disability in the first stages can improve treatment efficiency and save a patient’s life due to its curable characteristic. Questionnaire-based diagnostic criteria have been required for traditional depression diagnoses. This study suggests objective criteria and processed EEG signals of 17 MDD patients and 20 normal subjects to detect depression. The power of absolute and relative frequency bands and the inter-hemispheric asymmetry were extracted as the linear features, and the correlation dimension was considered as the non-linear feature. Five machine-learning models were used to classify the data. 91.7% of accuracy score was derived when the selected features with all the mentioned machine learning classifiers were used. In addition, the ROC-AUC score and F1 score were utilized for higher trustable results. The LR classifier demonstrated strong performance, achieving a peak F1 score of 93.3% (when using 'Absolute + Relative' features) and a peak ROC-AUC score of 97.1% (when using 'Relative' features). The results of the T-test have shown the Alpha inter-hemispheric asymmetry as not a robust biomarker. Besides, the correlation dimension was probed as an auxiliary biomarker in channels F8 and C4 to be applied with the other characteristics; the value of the T-test of other bands was insignificant. This study reveals the importance of feature selection and states that using the selected features and our suggested machine-learning models could provide a valuable tool for detecting depression.
لیست مقالات
لیست مقالات بایگانی شده
Automated Kinematic Analysis of Barbell Curl Using Custom IMU and Deep Learning Techniques
Mohammad Khalfe Nilsaz - Elham Shirzad - Ali Fahim
تحولات شهری و گردشگری هوشمند در شهرهای ایران
ریحانه بابائی - محمدعلی فیض پور
Natural Language Processing and Speech Processing Integration: Toward A Point-of-Care Framework for Early Detection of Alzheimer’s Disease
Aslan Modir - Fatemeh Shalchizadeh - Armin Ghasimi - Sina Shamekhi
طراحی و تحلیل المان محدود ایمپلنت ماژولار شخصیسازیشده مفصل ران مبتنی بر تصاویر CT : تمرکز بر عملکرد اتصال مخروطی تحت بارهای عملکردی
کبری پیرمحمدی - رسول عابدی - سعد رئیسی
Accurate Brain Vessel Segmentation in T1-Weighted MRI based on UNETR: Improving Neurosurgical Planning
Fatemeh Gholizadeh - Mahdiyeh Rahmani - Ahmad Pour-Rashidi - Ebrahim Najafzadeh - Parastoo Farnia - Alireza Ahmadian
Biomechanical Analysis of Blindfold Training for Backward Running in Handball Athletes
Aydin Najipour - Siamak Khorramymehr - Kamran Hassani
Assessing the Risk of Musculoskeletal Injuries of Workers at the Warehousing Workstation of Iran Tire Company
Mahshad Nazari Jeirani - Amirhossein Mohammadzadeh - Seyedeh Shokouh Azam Mirdamadi - Mohadeseh Sadat Shahangian - Navid Arjmand
ارزیابی تأثیر اندازه موجودیها و کیفیت سود بر توان واریز بدهی ها در بین شرکت های پذیرفته شده در بورس اوراق بهادار تهران
سمانه یاقوتی آذری - مهسا ریخته گری نظامی - نادر رضایی
بهینهسازی نظارت هوشمند در اتوماسیون صنعتی از طریق ادغام اینترنت اشیا و پهپاد
سولماز سرخی اسبقی - محمود محصل فقهی
بررسی کاربرد و چالش های هوش مصنوعی در مدیریت لجستیک بنادر
ایمان حق شناس - دامون رزمجویی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2