0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Multi-Level Driver Fatigue Detection Using EEG Signals with CNN–LSTM Models in a Compressed Sensing Framework
نویسندگان :
Sobhan Sheykhivand
1
Nastaran Khaleghi
2
1- Department of Biomedical Engineering Faculty of Interdisciplinary sciences and technologies Bonab, Iran
2- Department of Biomedical Engineering Faculty of Electrical and Computer Tabriz, Iran khaleghi@gmail.com
کلمات کلیدی :
driver fatigue،multi-level classification،CNN،LSTM،compressed sensing,،EEG
چکیده :
Driver fatigue is a major contributor to road accidents, leading to reduced attention, slower reaction times, and impaired decision-making. This study presents a multi-level fatigue detection framework based on electroencephalography (EEG) signals, in which a Convolutional Neural Network (CNN) is employed to extract spatial patterns, and a Long Short-Term Memory (LSTM) network is used to model temporal dynamics in a cascaded architecture. To handle the high dimensionality and redundancy of EEG data, Compressed Sensing (CS) is applied with various compression ratios. Experimental results demonstrate that the proposed system achieves over 90% accuracy and an F1-score above 90% in multi-level fatigue classification. Even at a compression ratio of CR = 40%, the accuracy remains above 90%, while reducing the data volume by approximately 40%. Additional analyses using sensitivity, specificity, Cohen’s kappa, and ROC curves confirm the superiority of the proposed approach compared to baseline models (without CS or with simpler architectures). These findings indicate that the proposed framework is well-suited for real-time, portable driver monitoring systems.
لیست مقالات
لیست مقالات بایگانی شده
بررسی تأثیر تعهد استراتژیک و همکاری زنجیره تأمین بر عملکرد عملیاتی و نوآوری
حسن فارسیجانی - ملیکا دهقانی اشکذری
مهندسی مالی اسلامی: چارچوبی برای توسعه پایدار، نوآوری و عدالت اقتصادی در نظام مالی اسلامی
مهدی زینالی - رسول قوسینی - مرتضی نوروززادبناء
Application of Attention Mechanisms in Deep Learning Models for COVID-19 Detection and Classification from Medical Images: A Systematic Review
Jafar Abdollahi - Babak Nouri-Moghaddam - Abbas Mirzaei
تاثیر کیفیت گزارشگری مالی بر مالی سازی شرکت با تاکید بر هزینه های نمایندگی
حیدر محمدزاده سالطه - محمد احسانی - سید علی موسوی
بررسی رابطه بین عدم تقارن اطلاعاتی و هزینه حقوق صاحبان سهام با فراوانی گزارشگری مالی
رعنا شهدآور - سولماز سعیدیان - رعنا پورفرج
شناسایی عوامل تعیین کننده قصد انطباق مالیات با تاکید بر نظریه رفتار برنامه ریزی شده
نیما صدری نوبر زاد - پریسا صدری نوبر زاد
تأثیر بالکچین بر امنیت و شفافیت در تراکنش های مال ی: نوآوری و چالشها
مهسا رحیمی - مصطفی جوینده
بهبود امنیت داده در رایانش ابری عمومی با استفاده از یک معماری ترکیبی مبتنی بر AES و ECC
فاطمه رمضانی - علیرضا چمکوری
مروری بر روشهای هوشمند تشخیص نفوذ در اینترنت اشیاء با تأکید بر یادگیری ماشین و الگوریتمهای بهینهسازی
رضا کهن - حمید براتی - علی براتی
ارائه مدل E-UNETR2D جهت قطعه بندی عروق کرونر از روی تصاویر سی تی آنژیوگرافی
مصطفی رجب زاده - فواد قادری - حمیدرضا پورعلی اکبر - نصرالله مقدم چرکری
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1