0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
How Geometric Asymmetry Impacts Aortic Valve Bioprosthesis Performance – A Finite Element Analysis
نویسندگان :
Reyhaneh Mosaferchi
1
Nasser Fatouraee
2
1- دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران)، تهران، ایران
2- دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران)، تهران، ایران
کلمات کلیدی :
Asymmetric aortic valve،Geometric orifice area،Coaptation area،Parametric design،Grasshopper،Regurgitation،Prosthetic valve design،Valve dynamics
چکیده :
A finite element analysis (FEA) was performed to compare the biomechanical performance of twelve asymmetric aortic valve designs against a symmetric reference, all sharing identical radius and height for geometric consistency. Using Grasshopper for parametric modeling, the study evaluated two key parameters: geometric orifice area (GOA), which affects flow during valve opening, and coaptation area (CA), which impacts sealing during closure. These were tested under simulated physiological conditions to assess the effects of asymmetry. Results showed significant differences in GOA and CA between asymmetric and symmetric designs, highlighting the role of asymmetry in valve opening and closing dynamics. The study identified valve asymmetry ranges (Area Diff % between -6.215 and 22.935) linked to improved performance, offering practical insights for optimizing aortic valve designs. Natural aortic valves, which serve as the benchmark for optimal performance, exhibit inherent asymmetry, with studies showing that one of the three leaflets typically displays statistically significant differences compared to the other two, which have minimal variation. These findings underscore the importance of mimicking such asymmetry in prosthetic valves to enhance efficiency. This analysis provides valuable guidance for advancing prosthetic valve design in clinical and engineering contexts.
لیست مقالات
لیست مقالات بایگانی شده
Improving Generalization in MRI-Based Deep Learning Models for Total Knee Replacement Prediction
Ehsan Karami - Hamid Soltanian-Zadeh
Development of a spiral microfluidic platform for predicting reduced mechanical damage in oocyte denudation
Ehsan Nabati - Maryam Saadatmand
Cerium-Based MOFs Incorporated into Zwitterionic Polymers for Disruption of Bacterial Biofilms: Toward Next-Generation Antimicrobial Surfaces
Helia Heydarinasab - Vahid Haddadi Asl - Mahdi Tohidian
کاربرد هوش مصنوعی در بهینه سازی تولید و کاهش هدر رفت منابع
مریم مژده
Multiclass ICU Length-of-Stay Prediction Using Tree-Based Machine Learning Techniques
Mahyar Mohammadian - Somayeh Afrasiabi
Accelerated Diffusion-Weighted Imaging via Diffusion Gradient Alternation in Radial k-Space Sampling
Fateme Hoseini Rashkani - Abbas Nasiraei Moghaddam
Leveraging Online Data to Enhance Medical Knowledge in a Small Persian Language Model
Mehrdad Ghassabi - Pedram Rostami - Hamidreza Baradaran kashani - Amirhossein Poursina - Zahra Kazemi - Milad Tavakoli
مروری بر ابزارهای نوین تأمین مالی اسلامی
مهدی زینالی
Perfluorocarbon-Based Oxygenation Systems: From Foundational Principles to Revolutionary Applications in Cancer Therapy and Tissue Engineering
Gity Mirzaei - Zeinab Mazloumi - Ali Baradar Khoshfetrat
پلی از شبیهسازی به عمل: انقلاب بومی هوش مصنوعی در آموزش ایران
مهتاب کرمیانی - سیران معروفی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2