0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Improving Generalization in MRI-Based Deep Learning Models for Total Knee Replacement Prediction
نویسندگان :
Ehsan Karami
1
Hamid Soltanian-Zadeh
2
1- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
2- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
کلمات کلیدی :
knee osteoarthritis،deep learning،medical image analysis،MRI،total knee replacement prediction،model generalization
چکیده :
Knee osteoarthritis (KOA) is a common joint disease that causes pain and mobility issues. While MRI-based deep learning models have demonstrated superior performance in predicting total knee replacement (TKR) and disease progression, their generalizability remains challenging, particularly when applied to imaging data from different sources. In this study, we show that replacing batch normalization with instance normalization, using data augmentation, and applying contrastive loss improves generalization. For training and evaluation, we used MRI data from the Osteoarthritis Initiative (OAI) database, considering sagittal fat-suppressed intermediate-weighted turbo spin-echo (FS-IW-TSE) images as the source domain and sagittal fat-suppressed three-dimensional (3D) dual-echo in steady state (DESS) images as the target domain. The results demonstrated a statistically significant improvement in classification metrics across both domains by replacing batch normalization with instance normalization in the baseline model, generating augmented input views using the Global Intensity Non-linear (GIN) augmentation method, and incorporating a supervised contrastive loss alongside the classification loss to align representations of samples with the same label. In the source domain, this approach achieved an accuracy of 74.12 ± 2.90, an F1 score of 74.57 ± 3.33, and a ROC AUC of 80.65 ± 2.83, outperforming the baseline model, which scored 71.29 ± 4.43, 69.76 ± 4.58, and 77.79 ± 4.66, respectively. In the target domain, the method achieved an accuracy of 70.04 ± 2.49, F1 score of 67.30 ± 3.57, and ROC AUC of 78.12 ± 1.97, compared to the baseline’s 52.87 ± 3.17, 18.98 ± 16.89, and 59.33 ± 6.20. The GIN method with contrastive loss performed better than all evaluated single-source domain generalization methods when using 3D instance normalization. Comparing GIN with and without contrastive loss (for both normalization types) showed that adding contrastive loss consistently led to better performance.
لیست مقالات
لیست مقالات بایگانی شده
پژوهشی در حسابداری و هوش مصنوعی با استفاده از مدلسازی موضوعی
زین العابدین پاشایی باروجی - حسین راستکار رضائی - علیرضا عظیمی ثانی
شبیه سازی عددی انقباض بطن راست قلب جنین انسان به روش تعامل سیال و جامد
سیده کیمیا مرتضوی فارسانی - هانیه نیرومند اسکوئی - بهروز جعفرزاده - محمد حسن فردوسی
تأثیر فعالیت های بازاریابی تجربی بر تجربه مشتری در متاورس: نقش واسطه ای سهولت درک شده و سودمندی درک شده و تأثیر آن بر عشق به برند
آیسان خضرلو - سید جعفر زنوزی
مقابله با عوامل ایجادکننده تقلب در صورتهای مالی (مرور سیستماتیک از ادبیات و تحلیل بیبلیومتریک)
شبنم بالازاده قره باغی - یونس حیدری - مریم یادگاری دیزناب - پرهام شاکری بهادر
In Silico Evaluation of PAMAM Dendrimers as Nanocarriers for Targeted Carmustine Delivery in Glioma Therapy
Noora Shaerzadeh - Maryam Azimzadeh Irani - Yeganeh Abbasian
تشخیص بیماری MS با استفاده از EfficientNet-B0 و CycleGAN بر پایه نقشههای ضخامت شبکیه
محبوبه سبزه یان - مریم سبزه یان - ماندانا سادات غفوریان - امین نوری
TransFuse++: A Hybrid CNN-Transformer Architecture with Cross-Attention, Temporal Modeling, and Uncertainty Estimation for Medical Image Segmentation
Masoud Noroozi - Sayna Jamaati - Hamed Aghapanah - Ali Saeeidi Rad - Mahsa Asadi Anar - Ali Darzi - Mahla Shokouhfar - Helia Sadat Kazemi - Mohammadreza Ghahari - Mohammad Saeed Soleimani Meigoli - Jafar Majidpour - Hossein Arabi - Ali Reza Karimian
تاثیر اختلاف قیمت خرید و فروش سهام و اهرم مالی بر مدیریت سود واقعی با تاکید بر نقش تعدیلی حاکمیت شرکتی
هادی اله قلیان - مهدی زینالی
تحلیل روند پژوهشهای علمی پیرامون الگوریتم بهینهسازی کلونی مورچگان چندهدفه
ملیحه نیک سیرت - محسن صفاریان
Semi-Automatic Multi-Stage Artifact Removal in EEG During Subthreshold GVS: A Machine Learning Approach for Neuromodulation Studies
Mahdi Babaei - Sepideh Hajipour Sardouie - Martin Keung - Varsha Sreenivasan - Hanaa Diab - Maryam S. Mirian - Martin J. McKeown
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1