0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Robust Glucose Level Classification from NIR-Based PPG Using Morphological Features
نویسندگان :
Arian Mesforoosh Mashhad
1
Yeganeh Binafar
2
Mohammad Reza Akbarzadeh Totonchi
3
1- دانشگاه فردوسی مشهد
2- دانشگاه فردوسی مشهد
3- دانشگاه فردوسی مشهد
کلمات کلیدی :
Diabetes classification،Photoplethysmography (PPG)،Near-infrared spectroscopy (NIRS)،Biomedical signal processing،Morphological features،Machine learning
چکیده :
Diabetes is a primary global health concern, and noninvasive monitoring could be critical for its early detection and management. This study presents a noninvasive approach to blood glucose classification using photoplethysmography (PPG) signal and machine learning approaches. However, PPG signals are biological signals that, similar to their counterparts, suffer from considerable environmental noise and patient-to-patient variability. Here, we propose a morphology-based framework for robust PPG-based Glucose classification. For this purpose, a custom-designed optical finger sensor operating at 940 nm was used to record two independent 30 s signals from fasting participants, including both healthy and diabetic subjects. After excluding low-quality signals, the final dataset included 159 subjects. Signals also underwent multi-stage filtering, normalization, and cycle-based template-matching quality control before feature extraction. We then employed the proposed framework to identify consistent cycle-shape patterns within each acquisition and verify their stability across repeated recordings. Two feature sets were compared including the cycle-based morphological and global signal-based features. Correlation analysis showed that morphology-based features were more robust and reproducible, while global signal features were less reliable under short-duration acquisitions. Multiple classifiers were tested, with Gradient Boosting achieving the highest accuracy (93.75%) using morphological features, compared to 84.38% with non-morphological features. These findings suggest that morphology-based signal analysis provides robust and salient features from short PPG signals, enabling practical and accurate noninvasive diabetes screening.
لیست مقالات
لیست مقالات بایگانی شده
هوشمندسازی زنجیره تأمین با بهرهگیری از الگوریتمهای هوش مصنوعی
غلامرضا جمالی - محمدهادی نامور
نقش هوش مصنوعی و اینترنت اشیا در ارتقاء بهداشت و سلامت
علیرضا پورهوشنگی - علی الماسی حشیانی
شناسایی و اولویت بندی موانع اجرای حسابداری منابع انسانی بوسیله TOPSIS
حسن پاکی
بررسی تأثیر مالکیت نهادی بر رابطه بین انحراف استراتژیک شرکت از صنعت و گزارشگری پایداری
ناصر مست چمن - محمد پورکریم
نقش هوش مصنوعی در تحول تجارت الکترونیک: مروری بر روشها و چالشها
الهام آزادی مرند
پیشبینی نمرات دروس دانشگاهی با استفاده از الگوریتم رگرسیون خطی در یادگیری ماشین
سجاد یوسفی - مریم پورنجف - هانیه شیری
Multi-View 2.5D Attention U-Net with 3D Fusion for Efficient Stroke Lesion Segmentation from T1-Weighted MRI
Fatemeh Salahshourinejad - Kamran Kazemi - Negar Noorizadeh - Mohammad Sadegh Helfroush - Ardalan Aarabi
Comparative Analysis of Time-Frequency Representations for Pediatric Respiratory Sound Classification Using Deep Learning
Ghazaleh Shiri - Hanieh Bahrami - Alireza Fallahi
مروری در زمینه کاربرد شبکه عصبی در بهداشت، ایمنی و محیطزیست (HSE)
هاجرسادات علی زاده مقدم
Deep Learning and Fuzzy Entropy in Parkinson's Diagnosis: a Framework Based on Task-Based EEG Signals
Amir Hossein Tajarrod - Tania Hossein Khani - َAsghar Zarei - Mousa Shamsi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2