0% Complete
English
صفحه اصلی
/
دومین کنفرانس ملی عصر انفجار تکنولوژی؛ هوش مصنوعی، تحولی در صنعت، تجارت و زنجیره تامین و دومین کنفرانس ملی علم داده در کاربردهای مهندسی
A Comprehensive Review of Deep Learning Integration in Recommender Systems: Taxonomy, Challenges, and Future Directions
نویسندگان :
Saba Kheirkhah Kheirabadi
1
Dr. Azita Shirazipour
2
Dr.Seyed Javad Mirabedini
3
1- Department of Computer, CT.C., Islamic Azad University, Tehran, Iran
2- Department of Computer, CT.C., Islamic Azad University, Tehran, Iran
3- Department of Computer, CT.C., Islamic Azad University, Tehran, Iran
کلمات کلیدی :
Deep Learning،Recommender Systems،Graph Neural Networks،AutoML،Contrastive Learning،Personalization،Fairness،Federated Learning،LLMs،Multi-Modal Fusion
چکیده :
The integration of deep learning (DL) into recommender systems (RS) has significantly reshaped how personalized content is generated and delivered across diverse domains. Traditional recommendations such as collaborative filtering and content-based filtering struggle to cope with the increasing complexity, diversity, and sparsity inherent in modern user-item data. DL techniques, however, can learn rich, non-linear mappings from multi-modal and large-scale data inputs. This is a comprehensive survey that synthesizes the outcome of 40 peer-reviewed papers published in the time period 2023–2025 to provide a fine-level taxonomy of DL architectures like CNNs, RNNs, Transformers, GNNs, and Autoencoders with multimodal and hybrid architectures. We categorize and compare and contrast these models in terms of methodology, application area (e.g., healthcare, academia, streaming media, e-commerce), and key challenge areas like cold-start, scalability, interpretability, and fairness. Furthermore, this paper advocates for an integrated pipeline through AutoML, federated learning, and pretraining with contrast to overcome the barriers related to personalization, privacy, and versatility. Through state-of-the-art model benchmarking and future trends such as LLM-based personalization and ethics-aware design, this survey not only recapitulates latest progress but also charts the future direction to the next generation of trustworthy and intelligent recommender systems.
لیست مقالات
لیست مقالات بایگانی شده
استفاده از هوش مصنوعی جهت تولید یک مقاله تحقیقاتی حسابداری: بررسی پیامدها
رعنا شهدآور - حسین قشلاق سفلائی - حسین عبداله زاده خانقاه
Simulation and evaluation of the impact of magnetic source geometry on mechanical stress and magnetic flux distribution in cancerous tumors
Alireza Heydari - Mahdi Halabian - Borhan Beigzadeh - Majid Siavashi
آینده پژوهی فرصتها و چالشهای احتمالی در صنعت بیمه ایران
حسین خانلو
ارتباط فرصتهای رشد، پایداری سود و سرمایه فکری با ضریب واکنش سود
عیسی ابیضی - سعید احمدی
Mental Workload Classification using Bidirectional LSTM Networks with Multi-Feature Fusion
Fatemeh Farokhshad - Sepideh Bahri Hampa - Amirhesam Ghasri - Sara Bagherzadeh
Neural Correlates of Reward and Punishment Processing During Gambling-Based Decision-Making: A Simultaneous EEG-fMRI Study
Elias Ebrahimzadeh - Amin Mohammad Mohammadi - Ahmad Hammoud - Lila Rajabion - Hamid Soltanian-Zadeh
مطالعه مروری طراحی و ساخت نانوحاملهای هوشمند برای تحویل هدفمند داروهای ضد سرطان به تومورهای لوزالمعده
ایدا احمدی - ابوبکر سوری - جعفرصادق مقدس
تأثیر گردش سیاسی بر رفتار گزارشگری حسابرس با تأکید بر اندازه موسسه حسابرسی
فریور بلندنظر - مرتضی خانلاری
Evaluation of Primary Stability of Dental Implants in Synthetic and Natural Bone A Comparative Study
Mahdi Farrokhi Kashtiban - Gholamreza Rouhi
بررسی تأثیر بالقوه فناوری بلاکچین بر کاهش مدیریت سود در شرکتهای بورسی: یک تحلیل مبتنی بر نگرش کارشناسان و متخصصین
ضرغام داداش زاده
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2