0% Complete
English
صفحه اصلی
/
دومین کنفرانس ملی عصر انفجار تکنولوژی؛ هوش مصنوعی، تحولی در صنعت، تجارت و زنجیره تامین و دومین کنفرانس ملی علم داده در کاربردهای مهندسی
A Comprehensive Review of Deep Learning Integration in Recommender Systems: Taxonomy, Challenges, and Future Directions
نویسندگان :
Saba Kheirkhah Kheirabadi
1
Dr. Azita Shirazipour
2
Dr.Seyed Javad Mirabedini
3
1- Department of Computer, CT.C., Islamic Azad University, Tehran, Iran
2- Department of Computer, CT.C., Islamic Azad University, Tehran, Iran
3- Department of Computer, CT.C., Islamic Azad University, Tehran, Iran
کلمات کلیدی :
Deep Learning،Recommender Systems،Graph Neural Networks،AutoML،Contrastive Learning،Personalization،Fairness،Federated Learning،LLMs،Multi-Modal Fusion
چکیده :
The integration of deep learning (DL) into recommender systems (RS) has significantly reshaped how personalized content is generated and delivered across diverse domains. Traditional recommendations such as collaborative filtering and content-based filtering struggle to cope with the increasing complexity, diversity, and sparsity inherent in modern user-item data. DL techniques, however, can learn rich, non-linear mappings from multi-modal and large-scale data inputs. This is a comprehensive survey that synthesizes the outcome of 40 peer-reviewed papers published in the time period 2023–2025 to provide a fine-level taxonomy of DL architectures like CNNs, RNNs, Transformers, GNNs, and Autoencoders with multimodal and hybrid architectures. We categorize and compare and contrast these models in terms of methodology, application area (e.g., healthcare, academia, streaming media, e-commerce), and key challenge areas like cold-start, scalability, interpretability, and fairness. Furthermore, this paper advocates for an integrated pipeline through AutoML, federated learning, and pretraining with contrast to overcome the barriers related to personalization, privacy, and versatility. Through state-of-the-art model benchmarking and future trends such as LLM-based personalization and ethics-aware design, this survey not only recapitulates latest progress but also charts the future direction to the next generation of trustworthy and intelligent recommender systems.
لیست مقالات
لیست مقالات بایگانی شده
تاثیر استفاده از هوش مصنوعی بر تصمیمات مالی شرکتهای بیمه
مسعود سبزچی دهخوارقانی - میترا زابلی پیله رود
EEG-Based Classification of Schizophrenia and Healthy Controls Subjects Using Statistical and Nonlinear Features with Emphasis on Fuzzy Entropy
Mahdiyeh Tofighi Milani - Sina Shamekhi - Asghar Zarei
Assessing the Risk of Musculoskeletal Injuries of Workers at the Warehousing Workstation of Iran Tire Company
Mahshad Nazari Jeirani - Amirhossein Mohammadzadeh - Seyedeh Shokouh Azam Mirdamadi - Mohadeseh Sadat Shahangian - Navid Arjmand
Stem cell engineering in tissue repair: A Review of Therapeutic Perspectives
Farnaz Mozayani - Mohammadbagher Kargar
Prediction of cardiac arrhythmia via an improved hierarchical fused fuzzy deep learning
Arman Daliri - Nora Mahdavi
DDQN-Learning of Hill-Type Musculoskeletal Arm Model for Elbow Motor Control
Mohammad-Reza Sayyed Noorani - Abbas Jafarpour Mahalleh - Kimiya Khojand
Curcumin-Loaded Carboxymethyl Cellulose/Polyvinyl Alcohol Smart Wound Dressing: A Biosensor Approach for pH-Responsive Monitoring and Healing
Saeid Orangi - Soodabeh Davaran
Short-term gains vs. long-term Success: Reward strategy design for reinforcement learning in football
Mohammad Pashaei - Amirhossein Tayebi - Hadi Amiri - Ali Fahim
مروری بر روشهای شناسایی و تشخیص غیرمستقیم لیتولوژی سازند با تاکید بر روشهای هوش مصنوعی
نگین فروزان - خالد معروفی - سید شهاب طباطباییمرادی
تاثیر هوش مصنوعی بر عملکرد شرکت با میانجیگری چابکی مشتری و ظرفیت جذب و تعدیلگری چابکی سازمان شرکت عامر اندیش هوشمند
مریم مقرب صمدی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1