0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Gait Retraining of Musculoskeletal Patients Using Deep Learning Techniques
نویسندگان :
Kourosh Alimadadi
1
Masoud Shariat Panahi
2
Morad Karimpour
3
Hadi Ghattan Kashani
4
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
کلمات کلیدی :
Skeletal abnormalities،Gait retraining،Depth image processing،Deep learning
چکیده :
Reconstructive surgeries and the use of bone and joint prostheses are among the most common treatments for lower-limb skeletal disorders. Patients undergoing such treatments often face challenges in regaining a proper gait pattern. To overcome these difficulties, they are typically required to participate in rehabilitation programs where correct walking strategies are taught by instructors. However, these programs demand specialized equipment and experienced trainers, which are both costly and time-consuming, and not easily accessible to all patients. In this paper, we propose a novel method for gait extraction, analysis, and correction in musculoskeletal patients using depth-sensing camera (RGBD) and deep learning techniques. The three-dimensional coordinates of anatomical key points in the patient’s lower limbs are automatically extracted from gait videos, and the corresponding motion patterns are represented through spatial variation graphs of these key points. Subsequently, inverse kinematics analysis of the motion pattern is performed to derive variations in anatomical indicators (distances and angles) across the main gait phases, including Toe-off, Mid-Stance, Mid Swing, and Heel-Strike. By comparing these indicators with those of healthy individuals, the system evaluates the extent and nature of gait deviations that require correction. Finally, the proposed framework provides recommendations for adjusting the patient’s gait and aligning it more closely with healthy walking patterns. Results from multiple case studies demonstrate that the proposed approach can significantly improve gait performance in the post-surgery phase and substantially reduce musculoskeletal complications caused by improper walking.
لیست مقالات
لیست مقالات بایگانی شده
چارچوب سلسلهمراتبی مبتنی بر مدل انتشار شرطی و شبکه پیشبینیکننده برای تولید و بازشناسی توامان حالات چهره
علی محمدپزنده - عمادالدین فاطمیزاده
حسابداری تغییرات اقلیمی و تأثیر آن بر گزارشگری مالی شرکتها
آرزو زمردپور - ارژنگ بنی سپهر - ثمن خسروی
کاربرد بیومکانیک و آنالیز راهرفتن در بهینهسازی درمان کودکان مبتلا به فلج مغزی: مرور ادبیات
علی جعفری - علیرضا هاشمی اسکویی - شقایق حسن زاده خانمیری
Dynamic Connectivity Reveals Transformative Power of Neurofeedback in Brain Functional Networks
Kasra Momeni - Gholam- Ali Hossein-Zadeh
سنجش میزان رضایت مشتریان بانک ملی شهرستان تنکابن با استفاده از مدل MCPDA
محمد اخشابی
DDQN-Learning of Hill-Type Musculoskeletal Arm Model for Elbow Motor Control
Mohammad-Reza Sayyed Noorani - Abbas Jafarpour Mahalleh - Kimiya Khojand
BiLSTM-Transformer: A Novel Hybrid Model for Accurate Prediction of Hand Joint Angles from sEMG Signals
Anita Sadat Sadati Rostami - Alireza Nazari - Mohammadreza Nayeri
Comparative Analysis of Time-Frequency Representations for Pediatric Respiratory Sound Classification Using Deep Learning
Ghazaleh Shiri - Hanieh Bahrami - Alireza Fallahi
تأمین مالی از طریق انتشار صکوک – مروری بر مطالعات پیشین
اعظم ولی زاده لاریجانی - سارا رمضانی
Fuzzy Estimator of the Soleus Activation during Heel-raising Motion using OpenSim–MATLAB
Mohammad-Reza Sayyed Noorani - Roghaiyeh Ahmadian Sarand - Nakisa Farshforoush
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2