0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Automated Tibial Bone Segmentation using 2D Swin-Unet on Knee X-ray Images
نویسندگان :
Ali Kazemi
1
Abolfazl Zamanirad
2
Soodabeh Esfandiary
3
Ebrahim Najafzadeh
4
Mohammad Hossein Nabian
5
Parastoo Farnia
6
Alireza Ahmadian
7
1- دانشگاه علوم پزشکی تهران
2- دانشگاه علوم پزشکی تهران
3- دانشگاه علوم پزشکی تهران
4- دانشگاه علوم پزشکی ایران
5- دانشگاه علوم پزشکی تهران
6- دانشگاه علوم پزشکی تهران
7- دانشگاه علوم پزشکی تهران
کلمات کلیدی :
Tibial Plateau Fracture،Medical Image Segmentation،Swin-Unet،X-ray Imaging،Deep Learning
چکیده :
Tibial plateau fractures (TPFs), which account for approximately 1% of all bone fractures, represent a complex subset of knee injuries with significant clinical implications if not accurately diagnosed and managed. The accurate diagnosis of TPFs from radiographs is challenged by subtle fracture lines and significant inter-observer variability in manual segmentation. To address these limitations, this study evaluates the performance of a Transformer-based deep learning model, Swin-Unet, for automated and precise tibial segmentation. A retrospective dataset comprising 958 anterior-posterior and lateral radiographs from 220 patients with TPFs was curated. Ground truth masks of the tibia bone were manually annotated and validated through a multi-stage review by orthopedic surgeons. Following preprocessing steps, including contrast enhancement with Contrast Limited Adaptive Histogram Equalization (CLAHE), a 2D Swin-Unet architecture featuring patch-based self-attention mechanisms was trained. The optimized Swin-Unet model demonstrated high fidelity, achieving a mean Dice Similarity Coefficient (DSC) of 0.8314, a mean Intersection over Union (IoU) of 0.7374, and an overall accuracy of 0.9735 on the validation set. Qualitative analysis confirmed the model's ability to accurately delineate tibial boundaries. In conclusion, this study validates the Swin-Unet model as a robust and efficient framework for automated tibial segmentation. By mitigating the challenges of manual delineation, this approach holds significant promise for improving the consistency of orthopedic diagnostic workflows. It serves as a foundation for AI-driven clinical decision support in musculoskeletal imaging.
لیست مقالات
لیست مقالات بایگانی شده
The Technological Pillars of Smart Hospitals: A 2022–2025 Review of IoMT, Wearables/RTLS/RFID, Robotics (IoRT), and VR/AR
Ali Karaminejad - Naeme Kadkhodai Eliaderani - Sahar Jafari - Mahdi Jafari Asl
حسابداری و حسابرسی با فناوری بلاک چین و هوش مصنوعی: بررسی ادبیات
رعنا شهدآور - محمد فرجی بنائی - مریم لطفی - فاطمه ذوالفقاری
نقش حسابداری مدیریت استراتژیک در تصمیمگیری استراتژیک
محمدرضا مهربان پور - جواد محمدی مهر
بررسی تأثیر هوش مصنوعی فازی بر رضایت مشتریان خدمات گردشگری سلامت
حسام رضایی - متین رحیمی مرام - مریم مصلح
مکان یابی ایستگاههای آتشنشانی با استفاده از الگوریتم بهینهسازی ازدحام ذرات
مهدی عزیزمحمدی - سید محسن میرحسینی - آرش شعبانی
ارزش های فردی و درک حسابرسان از تفکر نئولیبرالیسم
الهه زارع ابراهیم آبادی - بهمن بنی مهد - مهدی مرادزاده فرد - قدرت اله طالب نیا
بررسی تاثیر حسابداری منابع انسانی بر عملکرد رقابتی استراتژیک شرکتهای کوچک و متوسط استان گیلان
ائلناز سیادتی
مروری برمفاهیم دانش هیئت مدیره و فرآیندهای داخلی هیئت مدیره در حاکمیت شرکتی
زهرا سلیمانی زاده - زهره عارف منش
ارتباط بین روابط سیاسی و افشای مسئولیت پذیری اجتماعی شرکت
بیتا دلنواز اصغری - مهنا پیرایه جو - نیما رضااوغلی سقا - مائده خاکسار
A Comprehensive Review of Machine Learning Techniques for Automatic Skin Disease Detection
Mahdie Naseri - Azita Shirazipour - Seyed Javad Mirabedini
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2