0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Deep Learning and Fuzzy Entropy in Parkinson's Diagnosis: a Framework Based on Task-Based EEG Signals
نویسندگان :
Amir Hossein Tajarrod
1
Tania Hossein Khani
2
َAsghar Zarei
3
Mousa Shamsi
4
1- دانشکده مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران
2- دانشکده مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران
3- دانشکده مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران
4- دانشکده مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران
کلمات کلیدی :
Deep learning،Parkinson’s disease،EEG،Fuzzy entropy،LSTMFCN
چکیده :
Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide, characterized by reduced dopamine levels in the central nervous system. Electroencephalography (EEG) signals have emerged as a promising tool for diagnosing PD due to their non-invasive nature, low cost, and high temporal resolution. This paper proposes a framework for diagnosing PD in healthy individuals. The proposed framework involves the extraction of fuzzy entropy from sub-bands of wavelets, combined with deep learning networks to classify EEG signals obtained under an auditory oddball paradigm. The deep learning networks used in this study include the EEG Network (EEGNet), Residual Networks within EEG (ResNetEEG), EEG Transformer, and Long Short-Term Memory Fully Convolutional Network (LSTMFCN). Four classification scenarios were explored: healthy control (CTRL) vs. PD patients off medication (PD-OFF), CTRL vs. PD patients on medication (PD-ON), PD-ON vs. PD-OFF, and a multi-class. The results indicated that the ResNetEEG network achieved the best average accuracy of 99.78% for the CTRL vs. PD-OFF classification. In contrast, the LSTMFCN network demonstrated optimal performance for the other classifications, with average accuracies of 99.81% for CTRL vs. PD-ON, 99.38% for PD-ON vs. PD-OFF, and 99.85% for the multi-class scenario. Both the EEGNet and EEG Transformer networks also showed comparable performance. Even the ROC curves for these networks showed AUC values of 1.0, further confirming the effectiveness of the implemented networks. These results emphasize the significant potential of utilizing EEG-derived features and deep learning techniques for the accurate detection of PD across various clinical scenarios.
لیست مقالات
لیست مقالات بایگانی شده
Quantum Computing for AI: Current Status and Future Roadmap
Nayereh Majd
بازاریابی محتوایی هوشمند: بازآفرینی تعامل کاربران و برندها با کمک هوش مصنوعی در رسانههای اجتماعی
پریسا جعفری - سیروس فخیمی آذر - سلیمان ایرانزاده - حسین بوداقی خواجه نوبر
بررسی ارتباط بین کیفیت حسابرسی و عدم شفافیت اطلاعات با هزینه سرمایه
سمیه فرهادی - محمد رستمی
چالشها و فرصتهای نگارش و فرایند داوری مقالات با هوش مصنوعی
مرضیه باباشپور اصل
TransFuse++: A Hybrid CNN-Transformer Architecture with Cross-Attention, Temporal Modeling, and Uncertainty Estimation for Medical Image Segmentation
Masoud Noroozi - Sayna Jamaati - Hamed Aghapanah - Ali Saeeidi Rad - Mahsa Asadi Anar - Ali Darzi - Mahla Shokouhfar - Helia Sadat Kazemi - Mohammadreza Ghahari - Mohammad Saeed Soleimani Meigoli - Jafar Majidpour - Hossein Arabi - Ali Reza Karimian
Finite Element Analysis of Ankle-Foot Orthosis (AFO): Influence of Shell and Insole Thickness Across Material Variants
Maryam Sheikhi - َAisan Rafiei - Nima Jamshidi
بهبود امنیت شبکههای رایانش ابری مبتنی بر معماری OpenFlow با استفاده از SVM
سویل قنبرزاده چاوشی
Development of Folic Acid-Conjugated Iron Oxide Nanoparticles Loaded with Doxorubicin via Arc Discharge: A Novel Approach for Synergistic Photothermal-Chemotherapy of Cancer Using Bacterial Cellulose-Polyvinyl Alcohol Hydrogel
Saeid Orangi - Soodabeh Davaran
تاثیر کیفیت گزارشگری مالی بر مالی سازی شرکت با تاکید بر هزینه های نمایندگی
حیدر محمدزاده سالطه - محمد احسانی - سید علی موسوی
Preparation of a plant-based multifunctional nanocomposite hydrogel with conductivity and self-healing property for health monitoring
Nahid Salimiyan - Roya Sedghi - Sepehr Salighehdar
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2