0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
GPU-Accelerated GRAPPA: A Fast Implementation Using PyTorch for MRI Reconstruction
Authors :
Mehrdad Anvari-Fard
1
Mahdi Bazargani
2
Mohammad Javad Heidari
3
Hamid Soltanian-Zadeh
4
1- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
2- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
3- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
4- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
Keywords :
GRAPPA،MRI Reconstruction،Deep Learning،FastMRI،GPU acceleration
Abstract :
GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) is a widely used algorithm in MRI parallel imaging that reconstructs accelerated MRI scans by estimating the unknown phase-encoding lines omitted during k-space data acquisition. Unlike SENSE (Sensitivity Encoding), which operates in the image domain, GRAPPA directly processes k-space data and offers high reconstruction quality without requiring prior knowledge of coil sensitivity maps, making it one of the most commonly used algorithms for MRI reconstruction in clinical practice. Recent MRI reconstruction trends increasingly combine classical methods with deep learning, either as end-to-end trainable networks or hybrid pipelines that use physics-based operators within learning frameworks. GRAPPA is often employed as a preprocessing step before feeding slice information into deep learning models for MRI reconstruction. Despite its effectiveness, GRAPPA is typically a time-consuming part of the training process. In this work, we leverage the GPU capabilities of the PyTorch library and employ several optimization techniques to accelerate the GRAPPA algorithm. Our implementation is compared against the PyGRAPPA repository, developed by Nicholas McKibben, using a subset of the NYU fastMRI dataset. The results demonstrate that our optimized implementation achieves more than 40-fold speedup, which is statistically significant (p < 0.01) while maintaining equivalent image quality with no significant differences in reconstruction metrics (p > 0.05).
Papers List
List of archived papers
Argeted Cancer Treatment Through Tissue Engineering and Biomaterial-Based Drug Delivery Systems:
Laleh Etemad-Ghazani - Mina Saddi-Khelejan - Mahdi Hasanpour
Early Alzheimer’s Detection with MRI-Based Deep Convolutional Neural Networks and Transfer Learning
Tabasom Musavi - M. J. Tarokh
طبقه بندی دقیق تومورهای مغزی با رویکرد ترکیبی EfficientNetB4 و ترنسفورمر بینایی
الهه الهی پرست باقری - افشین ابراهیمی
طراحی و توسعه دستیار هوشمند مشاوره پزشکان در دانشگاه علوم پزشکی همدان
حبیب اله تحسینی - جواد کشوری کامران
مطالعه مروری طراحی و ساخت نانوحاملهای هوشمند برای تحویل هدفمند داروهای ضد سرطان به تومورهای لوزالمعده
ایدا احمدی - ابوبکر سوری - جعفرصادق مقدس
مروری بر نظام مسئله پیشبینی محبوبیت اخبار و الگوریتمهای ارائه شده برای آن
مجتبی ولی پور - مجید عبدالرزاق نژاد
Role of Protective Pads in Mandibular Biomechanics During Frontal Impact
Hosna Olfati - Ata Hashemi
تاثیر قابلیت صورتهای مالی بر مالی سازی شرکت
ابراهیم نویدی عباسپور - محمد احسانی
بهبود تخمین ضربان قلب در دستگاههای پوشیدنی تجاری با استفاده از فیلتر کالمن و مدلهای رگرسیون
میلاد رضایی ارجمند - تانیا حسین خانی - امیرحسین تجرد - علیرضا طالش جفادیده - اصغر زارعی
Conductive Hydrogels in Biomedical Engineering: Current Status and Challenges
Elham Amiraslani - Zahra Mohammadi
more
Samin Hamayesh - Version 42.4.1