0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
GPU-Accelerated GRAPPA: A Fast Implementation Using PyTorch for MRI Reconstruction
Authors :
Mehrdad Anvari-Fard
1
Mahdi Bazargani
2
Mohammad Javad Heidari
3
Hamid Soltanian-Zadeh
4
1- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
2- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
3- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
4- School of Electrical and Computer Engineering, College of Engineering, University of Tehran Tehran, Iran
Keywords :
GRAPPA،MRI Reconstruction،Deep Learning،FastMRI،GPU acceleration
Abstract :
GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) is a widely used algorithm in MRI parallel imaging that reconstructs accelerated MRI scans by estimating the unknown phase-encoding lines omitted during k-space data acquisition. Unlike SENSE (Sensitivity Encoding), which operates in the image domain, GRAPPA directly processes k-space data and offers high reconstruction quality without requiring prior knowledge of coil sensitivity maps, making it one of the most commonly used algorithms for MRI reconstruction in clinical practice. Recent MRI reconstruction trends increasingly combine classical methods with deep learning, either as end-to-end trainable networks or hybrid pipelines that use physics-based operators within learning frameworks. GRAPPA is often employed as a preprocessing step before feeding slice information into deep learning models for MRI reconstruction. Despite its effectiveness, GRAPPA is typically a time-consuming part of the training process. In this work, we leverage the GPU capabilities of the PyTorch library and employ several optimization techniques to accelerate the GRAPPA algorithm. Our implementation is compared against the PyGRAPPA repository, developed by Nicholas McKibben, using a subset of the NYU fastMRI dataset. The results demonstrate that our optimized implementation achieves more than 40-fold speedup, which is statistically significant (p < 0.01) while maintaining equivalent image quality with no significant differences in reconstruction metrics (p > 0.05).
Papers List
List of archived papers
Accurate Brain Vessel Segmentation in T1-Weighted MRI based on UNETR: Improving Neurosurgical Planning
Fatemeh Gholizadeh - Mahdiyeh Rahmani - Ahmad Pour-Rashidi - Ebrahim Najafzadeh - Parastoo Farnia - Alireza Ahmadian
تاثیر بعد استراتژی مالی وبعد پاسخگویی برکیفیت خدمات درک شده و خشنودی مشتریان )مورد مطالعه : فروشگاه افق کوروش(
حسین بوذری
بررسی مربوط بودن ارزش اطلاعات حسابداری با استفاده از روش CART: یک مطالعه برای شرکتهای داروسازی در بورس اوراق بهادار تهران
نوراله خدادادی - مهرداد قنبری - بابک جمشیدی نوید - جواد مسعودی
بهبود کنتراست تصویر با استفاده از الگوریتم بهینهسازی هوشمند-نهنگ مصنوعی
مهرداد نباهات - فرزین مدرس خیابانی
کاربرد هوش مصنوعی برای پیشبینی تقاضا در مدیریت زنجیره تامین
امیرمحمد ایل غمی
Patch-Based detection of proximal caries on bitewing radiographs
Sana Esmaeili - Parnian Alizadeh oskoee - Tahmineh Razi - Asiyeh Dadghar - Kasra Rahimipour - Ata Jodeiri
طراحی مدل هوشمند در جهت رتبهبندی شعب شرکتهای بیمه
مسعود سبزچی دهخوارقانی - میترا زابلی پیله رود
استقرار حاکمیت شرکتی در هوش مصنوعی در جهت منافع عمومی
رعنا شهدآور - الهام رضا پور - وحید حسین زاده قویدل - آیسان صدقی
Anastomosis Angle Effects in Beating-Heart Coronary Bypass Grafts: A Fluid–Structure Interaction Study
Mohammad Saleh Kazemi - Nasser Fatouraee - Aisa Rassoli
Acoustofluidic Separation of Circulating Tumor Cells from Semen via Induced Microvortices
Ashkan Behrouzi - Sheyda Nadi - Zahra Saeidpour - Majid Badieirostami
more
Samin Hamayesh - Version 42.5.2