0% Complete
فارسی
Home
/
دومین کنفرانس ملی عصر انفجار تکنولوژی؛ هوش مصنوعی، تحولی در صنعت، تجارت و زنجیره تامین و دومین کنفرانس ملی علم داده در کاربردهای مهندسی
یک مدل برنامهریزی پویا برای استقرار زنجیرههای تابعی سرویس در محاسبات ابری ابر تاریک
Authors :
حامد منکرسی
1
غلامرضا احمدی
2
1- دانشگاه رازی
2- رازی
Keywords :
زنجیره تابعی سرویس (Service Function Chaining - SFC)،محاسبات ابری ابر تاریک (Dark Cloud Computing)،برنامهریزی پویا (Dynamic Programming - DP)،توابع مجازی شبکه (Virtual Network Functions - VNFs)،محیطهای ابری امن (Secure Cloud Environments)،امنیت سایبری (Cybersecurity)،یادگیری تقویتی عمیق
Abstract :
استقرار بهینه زنجیرههای تابعی سرویس (SFC) در محیط محاسبات ابری ابر تاریک با چالشهای متعددی از جمله محرمانگی دادهها، پویایی منابع، و تضمین کیفیت سرویس (QoS) مواجه است. در این مقاله، یک مدل برنامهریزی پویا (DP) برای استقرار SFC ارائه میشود که همزمان هزینه عملیاتی، تأخیر، و امنیت را بهینهسازی میکند. مدل پیشنهادی با فرمولهکردن مسئله بهصورت یک فرآیند تصمیمگیری چندمرحلهای، راهحلی کارآمد برای تخصیص منابع تحت محدودیتهای امنیتی ابر تاریک ارائه میدهد. نتایج شبیهسازی نشان میدهد که این روش در مقایسه با الگوریتمهای مرسوم (مانند روشهای حریصانه و ژنتیک)، کاهش ۲۵ درصدی هزینه و بهبود ۲۰ درصدی عملکرد امنیتی را در پی دارد. این پژوهش چارچوبی نوین برای استقرار SFC در محیطهای ابری حساس به امنیت ارائه میکند. محاسبات ابری ابر تاریک به استقرار خدمات در لبه شبکه میپردازد تا محدودیتهای سیستمهای ابر متمرکز را برطرف کند. اما، استفاده از این مفاهیم هنوز در مراحل ابتدایی است و در شبکههای مبتنی بر محاسبات ابری ابر تاریک چالشهای زیادی وجود دارد. یکی از این چالشها زنجیره تابعی سرویس (SFC) است که از نمونههای نرمافزاری شبکه برای به اشتراک گذاری منابع استفاده میکند. فناوری مجازیسازی تابع شبکه (NFV) سختافزارهای میانجعبهای را جدا میکند و آنها را به عنوان توابع شبکه مجازی در نودهای متمرکز اجرا میکند VNF.ها در زنجیرههای تابعی سرویس به صورت متوالی به یکدیگر متصل میشوند. استقرار VNFها در شبکه مبتنی بر محاسبات ابری ابر تاریک یک مسأله پیچیده است و نیازمند بهرهبرداری بهینه از منابع و کاهش تاخیر و هزینه است. در این مقاله، با استفاده از یادگیری تقویتی عمیق (DRL) و بازاستفاده از VNFها، به مسأله استقرار SFC پرداخته شده است. الگوریتم پیشنهادی، با در نظر گرفتن محدودیت منابع و تجزیه و تحلیل توزیع دینامیکی VNFها، هزینه و کیفیت خدمات را تعادل میدهد. نتایج شبیهسازی نشان میدهد که الگوریتم پیشنهادی بهبود قابل توجهی در عملکرد سیستم دارد و نسبت به روشهای مرجع با در نظر گرفتن هزینه منابع از 14% تا 28% بهبود مییابد.
Papers List
List of archived papers
یادگیری تبدیل تصویر به کمک شبکههای مولد تخاصمی
امیر خاکپور
سنجش میزان رضایت مشتریان بانک ملی شهرستان تنکابن با استفاده از مدل MCPDA
محمد اخشابی
همآوایی در شبکهای جهانکوچک و متشکل از نورونهای ممریستوری
محمدمهدی شیرزاد - مهتاب مهراب بیک - سجاد جعفری
تبیین ابعاد و مؤلفههای مؤثر بر موفقیت مالیات کسب و کارهای نوپا مبتنی بر قابلیتهای نوآورانه با رویکرد هوش مصنوعی در شرایط اقتصاد امروز
حسین بوذری
بررسی تاثیر ارزش ویژه برند بر هوشمند سازی رفتار تبلیغاتی مصرکنندگان موبایل با میانجیگری عشق برند
زهرا علی میرزائی - حسین بوداقی
An RZ-OOK Modulation Technique for Joint Data Rate and Output Power Tuning in Biomedical Applications
Tayebeh Azadmousavi - Esmaeil Najafiaghdam
حریم خصوصی در هوش مصنوعی:چالش ها و رویکردهای نوین با تاکید بر حوزه ی سلامت و مالی
سیمین عدل خواه
بررسی نقش فناوری هوش مصنوعی در فرآیند ایجاد مدل خدمات دستگاه خودپرداز
سجاد یوسفی - مریم پورنجف - آیدا محمدی - ساحل پرسته
Carbon Nanotube Mediated Hyperthermia for Cancer Therapy
Behnam Zeinali - Afsaneh Mojra
کاربردهای کلانداده در حسابداری: شناسایی تقلبهای مالی و ارتقاء شفافیت مالی
الناز شاکری فر
more
Samin Hamayesh - Version 42.4.1