0% Complete
فارسی
Home
/
دومین کنفرانس ملی عصر انفجار تکنولوژی؛ هوش مصنوعی، تحولی در صنعت، تجارت و زنجیره تامین و دومین کنفرانس ملی علم داده در کاربردهای مهندسی
یک مدل برنامهریزی پویا برای استقرار زنجیرههای تابعی سرویس در محاسبات ابری ابر تاریک
Authors :
حامد منکرسی
1
غلامرضا احمدی
2
1- دانشگاه رازی
2- رازی
Keywords :
زنجیره تابعی سرویس (Service Function Chaining - SFC)،محاسبات ابری ابر تاریک (Dark Cloud Computing)،برنامهریزی پویا (Dynamic Programming - DP)،توابع مجازی شبکه (Virtual Network Functions - VNFs)،محیطهای ابری امن (Secure Cloud Environments)،امنیت سایبری (Cybersecurity)،یادگیری تقویتی عمیق
Abstract :
استقرار بهینه زنجیرههای تابعی سرویس (SFC) در محیط محاسبات ابری ابر تاریک با چالشهای متعددی از جمله محرمانگی دادهها، پویایی منابع، و تضمین کیفیت سرویس (QoS) مواجه است. در این مقاله، یک مدل برنامهریزی پویا (DP) برای استقرار SFC ارائه میشود که همزمان هزینه عملیاتی، تأخیر، و امنیت را بهینهسازی میکند. مدل پیشنهادی با فرمولهکردن مسئله بهصورت یک فرآیند تصمیمگیری چندمرحلهای، راهحلی کارآمد برای تخصیص منابع تحت محدودیتهای امنیتی ابر تاریک ارائه میدهد. نتایج شبیهسازی نشان میدهد که این روش در مقایسه با الگوریتمهای مرسوم (مانند روشهای حریصانه و ژنتیک)، کاهش ۲۵ درصدی هزینه و بهبود ۲۰ درصدی عملکرد امنیتی را در پی دارد. این پژوهش چارچوبی نوین برای استقرار SFC در محیطهای ابری حساس به امنیت ارائه میکند. محاسبات ابری ابر تاریک به استقرار خدمات در لبه شبکه میپردازد تا محدودیتهای سیستمهای ابر متمرکز را برطرف کند. اما، استفاده از این مفاهیم هنوز در مراحل ابتدایی است و در شبکههای مبتنی بر محاسبات ابری ابر تاریک چالشهای زیادی وجود دارد. یکی از این چالشها زنجیره تابعی سرویس (SFC) است که از نمونههای نرمافزاری شبکه برای به اشتراک گذاری منابع استفاده میکند. فناوری مجازیسازی تابع شبکه (NFV) سختافزارهای میانجعبهای را جدا میکند و آنها را به عنوان توابع شبکه مجازی در نودهای متمرکز اجرا میکند VNF.ها در زنجیرههای تابعی سرویس به صورت متوالی به یکدیگر متصل میشوند. استقرار VNFها در شبکه مبتنی بر محاسبات ابری ابر تاریک یک مسأله پیچیده است و نیازمند بهرهبرداری بهینه از منابع و کاهش تاخیر و هزینه است. در این مقاله، با استفاده از یادگیری تقویتی عمیق (DRL) و بازاستفاده از VNFها، به مسأله استقرار SFC پرداخته شده است. الگوریتم پیشنهادی، با در نظر گرفتن محدودیت منابع و تجزیه و تحلیل توزیع دینامیکی VNFها، هزینه و کیفیت خدمات را تعادل میدهد. نتایج شبیهسازی نشان میدهد که الگوریتم پیشنهادی بهبود قابل توجهی در عملکرد سیستم دارد و نسبت به روشهای مرجع با در نظر گرفتن هزینه منابع از 14% تا 28% بهبود مییابد.
Papers List
List of archived papers
تاثیر عدم تقارن اطلاعاتی بر ارتباط بین متنوع سازی شرکتی و مالی سازی شرکت
احمد محمدی - سعید سودی - سونیا کیوان بد
رابطه سه وجهی بازده اوراق خزانه، نرخ ارز و شاخص بورس در صنایع مختلف
پوریا کاظمی بختوری - سپیده محمودی وایقان - بهزاد محمودی وایقان
پیش بینی قصد فرار مالیاتی بر اساس تئوری رفتار برنامهریزی شده، روحیه مودیان مالیاتی و تیپهای شخصیتی با استفاده از شبکه عصبی
سحر بخشی - مهدی ذوالفقاری - کیهان آزادی هیر
تحول دیجیتال، مسیر خوب یا بد: یک دستور کار تحقیقاتی چند سطحی
مهدی زینالی - رعنا شهدآور
بررسی تأثیر مسئولیت اجتماعی شرکت بر مفاهیم حسابداری مالی (بازده سهام، مدیریت سود واقعی، عدم تقارن اطلاعات و عملکرد مالی) در شرکت پذیرفته شده در بورس اوراق بهادار
فاطمه ایمانی - محمود همت فر
بررسی تاثیر معیارهای قرارداد هوشمند بر عملکرد فناوری بلاکچین
محمد علیمحمدی - امیر نجفی
پیش بینی پیک بار تهران به کمک الگورتیم های یادگیری ماشین ترکیبی
مسعود ابراهیمی کاشف - حسین اقبالی - محمدعلی اقبالی
Multi-Level Driver Fatigue Detection Using EEG Signals with CNN–LSTM Models in a Compressed Sensing Framework
Sobhan Sheykhivand - Nastaran Khaleghi
تحلیل روند پژوهشهای علمی پیرامون الگوریتم بهینهسازی کلونی مورچگان چندهدفه
ملیحه نیک سیرت - محسن صفاریان
تحلیل تأثیر هوش مصنوعی بر وضعیت اقتصادی و تحولی در صنعت هنر
ری را صمدی راد - آرینا شهبازی - سیده فاطمه امامی - معصومه منصوری
more
Samin Hamayesh - Version 42.5.2