0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Multi-Level Driver Fatigue Detection Using EEG Signals with CNN–LSTM Models in a Compressed Sensing Framework
Authors :
Sobhan Sheykhivand
1
Nastaran Khaleghi
2
1- Department of Biomedical Engineering Faculty of Interdisciplinary sciences and technologies Bonab, Iran
2- Department of Biomedical Engineering Faculty of Electrical and Computer Tabriz, Iran khaleghi@gmail.com
Keywords :
driver fatigue،multi-level classification،CNN،LSTM،compressed sensing,،EEG
Abstract :
Driver fatigue is a major contributor to road accidents, leading to reduced attention, slower reaction times, and impaired decision-making. This study presents a multi-level fatigue detection framework based on electroencephalography (EEG) signals, in which a Convolutional Neural Network (CNN) is employed to extract spatial patterns, and a Long Short-Term Memory (LSTM) network is used to model temporal dynamics in a cascaded architecture. To handle the high dimensionality and redundancy of EEG data, Compressed Sensing (CS) is applied with various compression ratios. Experimental results demonstrate that the proposed system achieves over 90% accuracy and an F1-score above 90% in multi-level fatigue classification. Even at a compression ratio of CR = 40%, the accuracy remains above 90%, while reducing the data volume by approximately 40%. Additional analyses using sensitivity, specificity, Cohen’s kappa, and ROC curves confirm the superiority of the proposed approach compared to baseline models (without CS or with simpler architectures). These findings indicate that the proposed framework is well-suited for real-time, portable driver monitoring systems.
Papers List
List of archived papers
Multi-Objective Optimization of the Impeller of a mini Blood Pump: Balancing Outlet Pressure and Scalar Shear Stress
Reza Sahebi-Kuzeh kanan - Hanieh Niroomand-oscuii - Habib Badri Ghavifekr - Farzan Ghalichi
هوش مصنوعی و مدیریت مالی و سرمایه
محمد ملکی
Optimization Dynamic Stability and Energy Efficiency in Human-Like Bipedal Robot Over a Full Gait Cycle
Mahdi Sadeghi - Mostafa Rostami - Soroush Sadeghnejad
Physics-Informed Neural Networks for Cardiac Flow Estimation in 2D Simplified Human Right Ventricular Geometry
Mohammadmahdi Sekhavatpisheh - Nasser Fatouraee
Skin Thermomechanical Modeling: Assessing the Influence of Water and Ambient Air
Pezhman Namashiri - Akbar Allahverdizadeh - Fatemeh Khodadoost - Farid Vakili-Tahami
بررسی ارتباط بین ریسک پذیری شرکت و ضریب واکنش سود در شرکت های پذیرفته شده در بورس اوراق بهادار تهران
حسین بوداقی خواجهءنوبر - مینا محمدی
Development of a spiral microfluidic platform for predicting reduced mechanical damage in oocyte denudation
Ehsan Nabati - Maryam Saadatmand
نظریه پایداری و ذینفعان: دیدگاه فرآیندی
رعنا شهداور - لیلا مهدیوند - مریم حسن پور
شناسایی نقش تحولآفرین هوش مصنوعی بر خودکارسازی فرآیندهای حسابداری و سادهسازی گزارشهای مالی
صدیقه بخشی زاده باغستانی
تاثیر رویکرد هوش مصنوعی بر صنعت گردشگری جوامع مختلف ایرانی
حسین بوذری
more
Samin Hamayesh - Version 42.5.2