0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Lightweight 3D U-Net for Robust Liver Segmentation in Multi-Institutional CT Datasets
Authors :
Seyyed Mohammad Hosseini
1
Faeze Salahshour
2
Ahmadreza Sebzari
3
Masoomeh Safaei
4
Hossein Ghadiri Harvani
5
1- دانشگاه علوم پزشکی تهران
2- دانشگاه علوم پزشکی تهران
3- دانشگاه علوم پزشکی بیرجند
4- دانشگاه علوم پزشکی تهران
5- دانشگاه علوم پزشکی تهران
Keywords :
Liver،Segmentation،Computed Tomography (CT)،3D U-Net
Abstract :
A computed tomography (CT) image of the liver and surrounding structures provides detailed cross-sectional images, which highlight anatomical variations and pathological conditions. The combination of CT and U-Net networks is a well-known method for liver segmentation, which is vital for accurate diagnosis, treatment planning, and surgical intervention. However, the high computational demands of recent 3D U-Net–based architectures prevent their deployment in resource-constrained environments. A lightweight 3D U-Net optimized for liver segmentation is proposed in this study, maintaining high performance while reducing computational complexity drastically. Several institutional datasets of 250 abdominal CT volumes were compiled from public benchmarks (LiTS, IRCAD) and local clinical sources, encompassing anatomical, pathological, and protocol variations. An isotropic resampling procedure was used to resample, normalize intensity, standardize crops, and augment data on-the-fly. With fewer than two million parameters, the proposed model retains the encoder-decoder and skip-connection designs of conventional 3D U-Nets. An evaluation of a 30% independent set of tests achieved Dice similarity coefficients of 0.85 ± 0.02, intersect-over-unions of 0.82 ± 0.03, inference times under 0.7 s and GPU memory consumption below 2 GB. The performance was consistent across public and local datasets, highlighting the importance of heterogeneous training data. Even though the proposed model is slightly less accurate than heavy architecture, it delivers near-real-time segmentation with minimal resource consumption, so it can be integrated into clinical workflows, especially in environments where computational resources are limited.
Papers List
List of archived papers
تحلیل رنگ بافت عضلانی و چربی گاو با روشهای مبتنی بر بینایی ماشین: یک بررسی جامع
فاطمه بناءهمزایی - مصطفی حشمتی
بررسی عملکرد سلولهای T در میکرومحیط تومور HGSOC با رویکرد توالییابی تکسلولی
زهرا زندی - روزبه عابدینی نسب
تاثیر هوش مصنوعی بر عملکرد شرکت با میانجیگری چابکی مشتری و ظرفیت جذب و تعدیلگری چابکی سازمان شرکت عامر اندیش هوشمند
مریم مقرب صمدی
تحلیل تهدیدات امنیت سایبری در تجارت الکترونیک: مرور نظاممند ابعاد فنی، رفتاری و مدیریتی با تأکید بر اعتماد دیجیتال
سجاد یوسفی - مریم پور نجف - کوثر اسماعیلی - پردیس جوهری
Multi-View 2.5D Attention U-Net with 3D Fusion for Efficient Stroke Lesion Segmentation from T1-Weighted MRI
Fatemeh Salahshourinejad - Kamran Kazemi - Negar Noorizadeh - Mohammad Sadegh Helfroush - Ardalan Aarabi
Dual-View Data Representation and Contrastive Learning for Robust EEG-Based Person Identification
Mahdi Tabatabaei - Mohammad Bagher Shamsollahi
رابطه سه وجهی بازده اوراق خزانه، نرخ ارز و شاخص بورس در صنایع مختلف
پوریا کاظمی بختوری - سپیده محمودی وایقان - بهزاد محمودی وایقان
The Adaptive Approach of Ensemble Deep Learning Model in OCT Image Classification
Hamed Aghapanah Roudsari - Ali Ghaderian - Mrteza Choubin
Application of machine learning approach for prediction the heat capacity of amine
Aboozar Khajeh
Prediction of cardiac arrhythmia via an improved hierarchical fused fuzzy deep learning
Arman Daliri - Nora Mahdavi
more
Samin Hamayesh - Version 42.4.1