0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Lightweight 3D U-Net for Robust Liver Segmentation in Multi-Institutional CT Datasets
Authors :
Seyyed Mohammad Hosseini
1
Faeze Salahshour
2
Ahmadreza Sebzari
3
Masoomeh Safaei
4
Hossein Ghadiri Harvani
5
1- دانشگاه علوم پزشکی تهران
2- دانشگاه علوم پزشکی تهران
3- دانشگاه علوم پزشکی بیرجند
4- دانشگاه علوم پزشکی تهران
5- دانشگاه علوم پزشکی تهران
Keywords :
Liver،Segmentation،Computed Tomography (CT)،3D U-Net
Abstract :
A computed tomography (CT) image of the liver and surrounding structures provides detailed cross-sectional images, which highlight anatomical variations and pathological conditions. The combination of CT and U-Net networks is a well-known method for liver segmentation, which is vital for accurate diagnosis, treatment planning, and surgical intervention. However, the high computational demands of recent 3D U-Net–based architectures prevent their deployment in resource-constrained environments. A lightweight 3D U-Net optimized for liver segmentation is proposed in this study, maintaining high performance while reducing computational complexity drastically. Several institutional datasets of 250 abdominal CT volumes were compiled from public benchmarks (LiTS, IRCAD) and local clinical sources, encompassing anatomical, pathological, and protocol variations. An isotropic resampling procedure was used to resample, normalize intensity, standardize crops, and augment data on-the-fly. With fewer than two million parameters, the proposed model retains the encoder-decoder and skip-connection designs of conventional 3D U-Nets. An evaluation of a 30% independent set of tests achieved Dice similarity coefficients of 0.85 ± 0.02, intersect-over-unions of 0.82 ± 0.03, inference times under 0.7 s and GPU memory consumption below 2 GB. The performance was consistent across public and local datasets, highlighting the importance of heterogeneous training data. Even though the proposed model is slightly less accurate than heavy architecture, it delivers near-real-time segmentation with minimal resource consumption, so it can be integrated into clinical workflows, especially in environments where computational resources are limited.
Papers List
List of archived papers
پیشنهاد درمان شخصیسازیشده برای بیماران OCD با یادگیری تقویتی
سمیه حسینی زنوزی
Mental Workload Classification using Bidirectional LSTM Networks with Multi-Feature Fusion
Fatemeh Farokhshad - Sepideh Bahri Hampa - Amirhesam Ghasri - Sara Bagherzadeh
Antimicrobial and Bioactivity Evaluation of Laser-Modified Biodegradable Magnesium Alloy Coated with Chitosan–Graphene Oxide
Seyed Alireza Ensaniat - Ali Safary - Farid Naeimi - Hamid Reza Bakhsheshi Rad - Monireh Ganjali
محاسبه نیروی عضلانی اندام تحتانی و نیروی تماسی مفصل زانو در بیماران مبتلا به استئوآرتریت زانو
مجتبی صفری - محمد نجفی آشتیانی - فاطمه السادات علوی
کاربرد هوش مصنوعی برای پیشبینی تقاضا در مدیریت زنجیره تامین
امیرمحمد ایل غمی
عدم قطعیت سیاسی و سرعت تعدیل وجه نقد
مجتبی فلاحی نسب - ایمان داداشی - محمد جواد زارع بهنمیری
آمایش گردشگری مناطق ایران و هوش مصنوعی
محمدعلی فیض پور - مهدیه پیروی
تحلیل تهدیدات امنیت سایبری در تجارت الکترونیک: مرور نظاممند ابعاد فنی، رفتاری و مدیریتی با تأکید بر اعتماد دیجیتال
سجاد یوسفی - مریم پور نجف - کوثر اسماعیلی - پردیس جوهری
تحلیل تنش روتور توربین گازی به کمک آنالیز حساسیت
پروانه امجدیان
Dynamic Cross-Frequency Coupling Reveals Task Dependent Neural Engagement During Varying Cognitive Demands
Seyed Saman Sajadi - Babak Fazli - Fateme Karbasi - Ehsan Garosi - Milad Jalilian - Soheila Hosseinzadeh - Amir Homayoun Jafari - Seyed Abolfazl Zakerian
more
Samin Hamayesh - Version 42.5.2