0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Comparative Analysis of Time-Frequency Representations for Pediatric Respiratory Sound Classification Using Deep Learning
Authors :
Ghazaleh Shiri
1
Hanieh Bahrami
2
Alireza Fallahi
3
1- دانشگاه صنعتی همدان
2- دانشگاه صنعتی همدان
3- دانشگاه صنعتی همدان
Keywords :
Respiratory sounds،Classification,،Deep-learning،Adventitious lung sounds،Convolutional neural network،Transfer learning
Abstract :
Respiratory sound classification has emerged as a promising non-invasive and scalable tool for the early detection of respiratory disorders. While most previous studies have relied on a single feature extraction method—such as Mel-frequency cepstral coefficients (MFCC), Mel-spectrograms, or Short-Time Fourier Transform (STFT)—this study provides a comprehensive comparative analysis of these three approaches, evaluated individually, in pairwise combinations, and in a combined three-method configuration. Experiments are conducted on the SPRSound dataset, a pediatric respiratory sound database comprising 6,656 annotated events from seven unbalanced classes. Three architectures are assessed under identical preprocessing and augmentation strategies: a custom convolutional neural network (CNN), and two pre-trained models (VGG16 and InceptionV3) fine-tuned via transfer learning. Results show that STFT consistently delivers the highest performance for CNN and VGG16 models, while MFCC achieves the best accuracy with InceptionV3. Specifically, VGG16 with STFT attained 94.22% accuracy (score: 0.9503), whereas InceptionV3 with MFCC achieved the top performance within its architecture. These findings highlight the importance of aligning feature extraction techniques with model architecture and provide a systematic benchmark for SPRSound-based respiratory sound classification.
Papers List
List of archived papers
پیش بینی پیک بار تهران به کمک الگورتیم های یادگیری ماشین ترکیبی
مسعود ابراهیمی کاشف - حسین اقبالی - محمدعلی اقبالی
Improving Generalization in MRI-Based Deep Learning Models for Total Knee Replacement Prediction
Ehsan Karami - Hamid Soltanian-Zadeh
A Survey on Cardiac MRI Segmentation: From Classical Methods to State-of-the-art Deep Learning
Hamed Aghapanah Roudsari - Reza Saboori Amleshi - Ali Saeeidi Rad - Masoud Noroozi
واحد میکروپلاسما قابلحمل برای بازیافت ضایعات نفتی و تولید انرژی
سید جواد روده چی تبریزی - ثمر گلدوز
Prediction of cardiac arrhythmia via an improved hierarchical fused fuzzy deep learning
Arman Daliri - Nora Mahdavi
Graph Attention Networks for EEG-Based Emotion Recognition: Focus on Channel‑Level Attention
Akbar Asgharzadeh-Bonab - Hamid Bigdeli - Mohammad Javad Heidari
ارائه یک مدل ARIMAX بهبود یافته برای پیش بینی قیمت سهام
عارفه عمیدیان - امیرمسعود عمیدیان - مینا مسعودی فر
Influence of artificial intelligence in the mining industry and its role in the economic development
Parinesa Moshefi
شناسایی خودکار حملات روز صفر با رویکرد چندفازی در تولید امضاهای Snort
مازیار کریمی - سعید مهرجو
تاثیر کیفیت گزارشگری مالی بر خطر سقوط قیمت سهام با تاکید بر سهامداران نهادی
محمد قرجی بنائی - اسماعیل زادمهر - محمدرضا حامدبابائی
more
Samin Hamayesh - Version 42.4.1