0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Dynamic Classification of Resting-State EEG Using Adaptive Functional Connectivity in Mild Traumatic Brain Injury
Authors :
Farzaneh Manzari
1
Peyvand Ghaderyan
2
1- دانشگاه صنعتی تبریز(سهند)
2- دانشگاه صنعتی تبریز(سهند)
Keywords :
Adaptive Intrinsic Warped Connectivity،Dynamic connectivity feature،Functional Connectivity،Mild Traumatic Brain Injury،Recurrent Neural Network
Abstract :
Mild Traumatic Brain Injury (mTBI) is a common and potentially life-threatening medical condition that can lead to long-lasting physical and cognitive impairments and accounts for 90% of all TBIs. Brain injury is associated with disrupted connectivity resulting from damage to the axons. This study investigated brain connectivity using resting-state electroencephalogram (EEG) signals in patients with mTBI. Hence, a novel hybrid approach, namely Adaptive Intrinsic Warped Connectivity (AIWC), has been proposed to examine functional connectivity, based on empirical mode decomposition, analytical representation, and dynamic warping techniques. AIWC effectively reveals dynamic, nonlinear coupling patterns that reflect the brain’s spontaneous organization and transition states. An analysis has been conducted to compare the detection performance of the proposed connectivity features across symmetrical or asymmetrical channel pairs. The study also examined the effects of several sessions after injury, as well as the utilization of amplitude and phase information through the Recurrent Neural Network as a dynamic mapping procedure, and has been evaluated using a 10-fold cross-validation technique. The suggested algorithm has been tested using resting-state EEG signals from the initial session, as well as at two- and four-month follow-ups with 52 individuals diagnosed with mTBI and 31 healthy controls. The results obtained show a high average accuracy rate of 99.22%. The analysis has also demonstrated the proposed feature's higher performance across the frontal lobe, frontal-parietal, frontal-temporal, and frontal-occipital regions.
Papers List
List of archived papers
BiLSTM-Transformer: A Novel Hybrid Model for Accurate Prediction of Hand Joint Angles from sEMG Signals
Anita Sadat Sadati Rostami - Alireza Nazari - Mohammadreza Nayeri
Enhancing Type 2 Diabetes Diagnosis with Evolutionary Algorithms and Machine Learning
Parisa Rezaei - Mohsen Saffar - Hamid Reza Naji - Mohammad Mehdi Faghih - Rasoul Nouriazar
Diagnostic and Classification Analysis of Retinal Diseases Using OCT Imaging: Focus on Diabetic Retinopathy and Overlap with Other Retinal Disorders
Fatemeh Reyhani - Yashar Amizadeh - Ata Jodeiri
نقش هوش مصنوعی در چابکی زنجیره تامین بر اساس دیدگاه زنجیره تامین بشردوستانه
اسماعیل محبی کندسری
Dual-View Data Representation and Contrastive Learning for Robust EEG-Based Person Identification
Mahdi Tabatabaei - Mohammad Bagher Shamsollahi
Dynamic Classification of Resting-State EEG Using Adaptive Functional Connectivity in Mild Traumatic Brain Injury
Farzaneh Manzari - Peyvand Ghaderyan
Magnetic Catheter Robot with Reduced Friction for Endovascular Minimally Invasive Access
Sina Eskandary - Mohammad Amin Salati - Rezayat Parvizi - Farhang Abbasi
بررسی مفاهیم و کاربردهای جدید در حوزه یادگیری عمیق
سید حسن مرتضوی - علی عبدالعظیمی
تأمین مالی از طریق انتشار صکوک – مروری بر مطالعات پیشین
اعظم ولی زاده لاریجانی - سارا رمضانی
پذیرش فناوری هوش مصنوعی در بین کارکنان واحدهای مالی و حسابداری در صنعت خدمات اشتراکی
زهرا اسمی - معصومه جعفری - فرهاد جباری متین
more
Samin Hamayesh - Version 42.5.2