0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Mitigating MRI Domain Shift in Sex Classification: A Deep Learning Approach with ComBat Harmonization
Authors :
Peyman Sharifian
1
Mohammad Saber Azimi
2
Masoud Noroozi
3
Alireza Karimian
4
Hossein Arabi
5
1- دانشگاه اصفهان
2- دانشگاه شهید بهشتی
3- دانشگاه اصفهان
4- دانشگاه اصفهان
5- دانشگاه ژنو
Keywords :
Deep Learning،Sex Classification،Combat Harmonization،Domain Adaptation،Magnetic Resonance Imaging
Abstract :
Deep learning models for medical image analysis often suffer from performance degradation when applied to data from different scanners or protocols, a phenomenon known as domain shift. This study investigates this challenge in the context of sex classification from 3D T1-weighted brain magnetic resonance imaging (MRI) scans using the IXI and OASIS3 datasets. While models achieved high within-domain accuracy (around 0.95) when trained and tested on a single dataset (IXI or OASIS3), we demonstrate a significant performance drop to chance level (about 0.50) when models trained on one dataset are tested on the other, highlighting the presence of a strong domain shift. To address this, we employed the ComBat harmonization technique to align the feature distributions of the two datasets. We evaluated three state-of-the-art 3D deep learning architectures (3D ResNet18, 3D DenseNet, and 3D EfficientNet) across multiple training strategies. Our results show that ComBat harmonization effectively reduces the domain shift, leading to a substantial improvement in cross-domain classification performance. For instance, the cross-domain balanced accuracy of our best model (ResNet18 3D with Attention) improved from approximately 0.50 (chance level) to 0.61 after harmonization. t-SNE visualization of extracted features provides clear qualitative evidence of the reduced domain discrepancy post-harmonization. Cross-domain balanced accuracy improved from ~0.50 to 0.61 after ComBat, a modest yet meaningful gain that moves the model from chance-level failure toward more reliable generalization while remaining below clinical utility. This work underscores the critical importance of domain adaptation techniques for building robust and generalizable neuroimaging AI models.
Papers List
List of archived papers
تشخیص حملات اینترنتی با مدل های زبانی بزرگ تقطیری در شبکه های توزیع شده
جواد جهانگیری درزه کنانی - امین بابازاده
Document Clustering Using Deep Pre-trained Language Model Embeddings for Information Retrieval
Mahdi Mohammadiha - Mohammad Hassan Sadreddini - Morteza Mohammadi Zanjireh
طراحی مدل هوشمند در جهت رتبهبندی شعب شرکتهای بیمه
مسعود سبزچی دهخوارقانی - میترا زابلی پیله رود
Comparative Assessment of U-Net and Pix2Pix for Applying Direct Attenuation Correction in the Image Domain in 68Ga-PSMA PET/CT Imaging
Negin Hamidiyan - Hadi Taleshi Ahangari - Pardis Ghafarian - Hossein Arabi - Mohammad Reza Ay
بررسی تاثیر خدمات حسابرسی برکیفیت گزارشگری مالی با تاکید بر نقش حسابرسان دارای تخصص حسابداری
امیر اقاعلی زاده دارانداشی - فاطمه صمدی
Prediction of cardiac arrhythmia via an improved hierarchical fused fuzzy deep learning
Arman Daliri - Nora Mahdavi
Short-term gains vs. long-term Success: Reward strategy design for reinforcement learning in football
Mohammad Pashaei - Amirhossein Tayebi - Hadi Amiri - Ali Fahim
Multi-Objective Optimization of the Impeller of a mini Blood Pump: Balancing Outlet Pressure and Scalar Shear Stress
Reza Sahebi-Kuzeh kanan - Hanieh Niroomand-oscuii - Habib Badri Ghavifekr - Farzan Ghalichi
MRI to SPECT Image Translation for Parkinson's Disease Diagnosis
Pegah Zandian PourEsfahani - Abolfazl Adib Almojahedi - Seyyede Zohreh Seyyed Salehi
شبیه سازی افزایش نفوذ دارو در لوله مویرگی با غشا نفوذپذیر به کمک اثر نانوذرات مغناطیسی
پریماه سلیمی - هامون پورمیرزاآقا - منصور امیری دوگاهه - علی وظیفه دوست صالح - سیده سوده جهانی
more
Samin Hamayesh - Version 42.5.2