0% Complete
فارسی
Home
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Mitigating MRI Domain Shift in Sex Classification: A Deep Learning Approach with ComBat Harmonization
Authors :
Peyman Sharifian
1
Mohammad Saber Azimi
2
Masoud Noroozi
3
Alireza Karimian
4
Hossein Arabi
5
1- دانشگاه اصفهان
2- دانشگاه شهید بهشتی
3- دانشگاه اصفهان
4- دانشگاه اصفهان
5- دانشگاه ژنو
Keywords :
Deep Learning،Sex Classification،Combat Harmonization،Domain Adaptation،Magnetic Resonance Imaging
Abstract :
Deep learning models for medical image analysis often suffer from performance degradation when applied to data from different scanners or protocols, a phenomenon known as domain shift. This study investigates this challenge in the context of sex classification from 3D T1-weighted brain magnetic resonance imaging (MRI) scans using the IXI and OASIS3 datasets. While models achieved high within-domain accuracy (around 0.95) when trained and tested on a single dataset (IXI or OASIS3), we demonstrate a significant performance drop to chance level (about 0.50) when models trained on one dataset are tested on the other, highlighting the presence of a strong domain shift. To address this, we employed the ComBat harmonization technique to align the feature distributions of the two datasets. We evaluated three state-of-the-art 3D deep learning architectures (3D ResNet18, 3D DenseNet, and 3D EfficientNet) across multiple training strategies. Our results show that ComBat harmonization effectively reduces the domain shift, leading to a substantial improvement in cross-domain classification performance. For instance, the cross-domain balanced accuracy of our best model (ResNet18 3D with Attention) improved from approximately 0.50 (chance level) to 0.61 after harmonization. t-SNE visualization of extracted features provides clear qualitative evidence of the reduced domain discrepancy post-harmonization. Cross-domain balanced accuracy improved from ~0.50 to 0.61 after ComBat, a modest yet meaningful gain that moves the model from chance-level failure toward more reliable generalization while remaining below clinical utility. This work underscores the critical importance of domain adaptation techniques for building robust and generalizable neuroimaging AI models.
Papers List
List of archived papers
هوش مصنوعی در ارزیابی عملکرد کارکنان دولت: چالشها، فرصتها و پیامدهای اخلاقی
حسین بوداقی خواجهءنوبر - بهارک یادگار جمشیدی
مشارکت دادن حسابداران مدیریت در پایداری شرکت
رعنا شهد آور - بیتا یوسف پور نوینی
تاثیر ویژگی های هیئت مدیره بر ابهام در اطلاعات حسابداری شرکت ها
ابراهیم نویدی عباسپور - سمیه ملازاده طسمالو
Stem cell engineering in tissue repair: A Review of Therapeutic Perspectives
Farnaz Mozayani - Mohammadbagher Kargar
Conductive Hydrogels in Biomedical Engineering: Current Status and Challenges
Elham Amiraslani - Zahra Mohammadi
Binary Discrete Emotion Detection with Peripheral and Fp1-Fp2 EEG Signals on PEEFS Dataset
Fatemeh Shalchizadeh - Sina Shamekhi - Mahdi Jafari Asl
بررسی نقش رایانش ابری در توسعه اینترنت اشیا: فرصتها و چالشهای ادغام فناوریها
سعیده نادری - سید حمید غفوری مهدی آباد
Effect of Aimlabs Software on Sustained Attention, Reaction Time, and Hand-Eye Coordination in Stroke Patients: A Preliminary Study
SEYEDALI BAGHERZADEH - Leyla Rastgar-Farajzadeh
مروری در زمینه کاربرد شبکه عصبی در بهداشت، ایمنی و محیطزیست (HSE)
هاجرسادات علی زاده مقدم
نقش هوش مصنوعی در بازاریابی صنعتی B2B
علی نظیری فیروز سالاری - زهرا کریمی فرنور
more
Samin Hamayesh - Version 42.4.1