0% Complete
صفحه اصلی
/
دومین کنفرانس ملی عصر انفجار تکنولوژی؛ هوش مصنوعی، تحولی در صنعت، تجارت و زنجیره تامین و دومین کنفرانس ملی علم داده در کاربردهای مهندسی
Modeling Customer Behavior in Online Stores Based on the RFM Model and Random Forest and SVM Algorithms
نویسندگان :
Somayeh Ebrahimi Emamchai
1
Nayere Zaghari
2
1- دانشگاه آزاد تهران مرکزی
2- دانشگاه آزادتهران مرکزی
کلمات کلیدی :
Customer Classification،Classification Performance Evaluation،Supervised Learning Algorithms،Machine Learning
چکیده :
With the increasing volume of purchase history and user activity in online shops, employing machine learning techniques alongside conventional methods like the RFM model has proven to be an effective approach for analyzing customer behavior. One of the key challenges in this area is accurately identifying important customers and the limited use of vast data for marketing decisions. This paper will propose a hybrid methodology that integrates RFM scores with supervised machine learning models—Random Forest and Support Vector Machine (SVM)—to provide a precise method for classifying online store customers. For this purpose, actual data were retrieved from the Kaggle website, and after processing, RFM values were calculated. Subsequently, Random Forest and SVM algorithms were utilized to categorize customers into high-value, medium-value, and low-value segments. The results highlighted that the Random Forest model achieved an accuracy of 92.6, while the SVM model reached 90.38, indicating strong performance in customer classification. The performance of the models was assessed based on data mining metrics such as accuracy, precision, recall, F1-score, and AUC. The hybrid model proposed here can effectively support marketing decisions, enhance customer experience personalization, and increase conversion rates and client loyalty in e-commerce environments. model proposed here can effectively support marketing decisions, enhance customer experience personalization, and increase conversion rates and client loyalty in e-commerce environments. while the SVM model reached 90.38, indicating strong performance in customer classification. The performance of the models was assessed based on data mining metrics such as accuracy, precision, recall, F1-score, and AUC. The hybrid model proposed here can effectively support marketing decisions, enhance customer experience personalization, and increase conversion rates and client loyalty in e-commerce environments.
لیست مقالات
لیست مقالات بایگانی شده
آینده حرفه حسابرسی در پرتو هوش مصنوعی و تکنولوژی های نوین
مهدی مرادزاده فرد - غلامحسین دوانی - پروانه خالقی
کاربردهای کلانداده در حسابداری: شناسایی تقلبهای مالی و ارتقاء شفافیت مالی
الناز شاکری فر
Edge AI for Real-Time UAV Data Processing
Mohammad Mahdi Salmani
نقش یادگیری عمیق در توسعه هوش مصنوعی و کاربردهای آن در صنعت، تجارت و زنجیره تأمین
آیدا مهرنیا
نگاهی جامع به مسئولیت اجتماعی و نقش برجسته آن در مدیریت سازمانها و بنگاههای تجاری
قاسم رحیمی ریگی - محسن رشیدی باغی - مهنام ملایی
بررسی روش های تشخیص فیشینگ با استفاده از یادگیری ماشین
حامد منکرسی - غلامرضا احمدی
بازاریابی محتوایی هوشمند: بازآفرینی تعامل کاربران و برندها با کمک هوش مصنوعی در رسانههای اجتماعی
پریسا جعفری - سیروس فخیمی آذر - سلیمان ایرانزاده - حسین بوداقی خواجه نوبر
بررسی تأثیر مالکیت نهادی بر رابطه بین انحراف استراتژیک شرکت از صنعت و گزارشگری پایداری
ناصر مست چمن - محمد پورکریم
بررسی کارایی و اثربخشی عملیاتی بانکهای پذیرفتهشده در بورس اوراق بهادار تهران با سنجههای ارزش افزوده بازار و بازده سرمایهگذاری
محمد جعفری
بررسی تأثیر قدرت رقابتی و ریسک ورشکستگی بر اعتبار تجاری شرکتهای پذیرفته شده در بورس اوراق بهادار تهران
فاطمه تسلیمی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.3