0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
Investigating the Self-optimizing nnU-NetV2 for Kidney Tumor Segmentation: Application to the KiTS23 Dataset
نویسندگان :
Sanam Doostinia
1
Masoud Noroozi
2
Mohammad Saber Azimi
3
Jafar Majidpour
4
Hossein Arabi
5
1- دانشگاه صنعتی خواجه نصیرالدین طوسی
2- دانشگاه اصفهان
3- دانشگاه شهید بهشتی
4- University of Raparin Rania, Iraq
5- Geneva University Hospital
کلمات کلیدی :
Deep Learning،Medical Image Segmentation،nnU-NetV2،Kidney Tumor Segmentation
چکیده :
Kidney cancer ranks among the top 10 most prevalent cancers, with renal cell carcinoma (RCC) being the dominant form, accounting for approximately 90% of all kidney cancer cases. As computer technology advances unprecedentedly, its integration into the medical field, particularly in computer-aided diagnostics and treatment, has grown significantly. In this work, we evaluate the nnU-NetV2 segmentation model on the kidney tumor segmentation dataset (KiTS2023). The 3D nnU-NetV2 model was trained for 300 Epochs with single-fold validation, using 320 CT scans from the retrospective KiTS23 dataset, with 80 cases for validation and 89 cases for testing. The evaluation metrics Dice Similarity Coefficient (DSC), IoU (Intersection over Union), sensitivity, and specificity were applied to assess performance in both region-based and foreground segmentation. Test-set DSC values were 0.8334 (Kidney+Tumor+Cyst), 0.6678 (Tumor+Cyst), and 0.6009 (Tumor); IoU scores were 0.7705, 0.5621, and 0.5078, respectively. Sensitivity values were 0.7915, 0.6743, and 0.6459, respectively, and specificity remained consistently high at 0.99 across all regions. For foreground segmentation on the test set, DSC was 0.7007, and IoU was 0.6135. Despite using a relatively low number of epochs and single-fold validation, comparison with the benchmark results demonstrates that the nnU-Net model remains a robust tool for automatic kidney tumor segmentation.
لیست مقالات
لیست مقالات بایگانی شده
استفاده از هوش مصنوعی در پزشکی و تشخیص بیماری
مهیار زهرابی
افشای عملکرد پایدار ی و مشاغل خانوادگی
رعنا شهدآور - الناز نجفی - مهری علیپور اصل
ارتباط بین اطمینان بیش از حد مدیرعامل و خطر اخلاقی
عیسی ابیضی
Corrective Insoles Enhance Center of Mass Stability During Stair Descent in Individuals with Leg Length Discrepancy
Kasra Alborzi - Alireza Hashemi Oskouei - Pouya Mansouri - Seyed Mehran Ayati Najafabadi
Adaptive neuro-fuzzy inference system (ANFIS) for prediction the gibbs energy of formation
Aboozar Khajeh
DMAEMA-based photocrosslinkable hydrogels with injectable capabilities for smart drug delivery systems in implant infections
Fatemeh Haj Sadeghi - Vahid Haddadi Asl - Hanie Ahmadi
کاربردها، تکنیکها، چالشها و ملاحظات اخلاقی و اجتماعی در سیستمهای پیشنهاددهنده
کیانا رحیمی - سمانه شیبانی
Enhancing Type 2 Diabetes Diagnosis with Evolutionary Algorithms and Machine Learning
Parisa Rezaei - Mohsen Saffar - Hamid Reza Naji - Mohammad Mehdi Faghih - Rasoul Nouriazar
نقش کلیدی نانولوله های کربنی در بهبود همزمان خواص مکانیکی، ضدباکتریایی و زیست سازگاری پوشش های HA-Ta2O5 بر روی آلیاژهای حافظه دار NiTi
نازیلا هوراندقدیم - جعفر خلیل علافی
EEG Graph Construction: A Comparative Analysis for Classification Application
Kiana Kalantari - Mohammad Bagher Shamsollahi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2