0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
A Survey on Cardiac MRI Segmentation: From Classical Methods to State-of-the-art Deep Learning
نویسندگان :
Hamed Aghapanah Roudsari
1
Reza Saboori Amleshi
2
Ali Saeeidi Rad
3
Masoud Noroozi
4
1- دانشگاه علوم پزشکی اصفهان
2- بیمارستان شهید رجایی تهران
3- گروه مهندسی پزشکی، دانشکده مهندسی، دانشگاه اصفهان
4- گروه مهندسی پزشکی، دانشکده مهندسی، دانشگاه اصفهان
کلمات کلیدی :
Cardiac MRI Segmentation،Deep Learning،Hybrid Methods،Machine Learning Methods،Survey
چکیده :
Accurate and timely diagnosis of cardiac pathologies relies heavily on Cardiovascular Magnetic Resonance (CMR) imaging, the gold standard for assessing myocardial structure, function, and tissue characteristics. A critical step in CMR analysis is the segmentation of cardiac chambers—particularly the left ventricle, right ventricle, and myocardium—to derive essential clinical parameters such as ejection fraction, ventricular volumes, and myocardial mass. Manual segmentation, while accurate, is labor-intensive and subject to inter-observer variability, limiting its scalability in clinical practice. This has driven the need for automated, reliable, and reproducible segmentation methods. Classical approaches, including active contours and level sets, struggle with noise and low contrast. In contrast, deep learning models—especially U-Net variants, transformers, and hybrid architectures—have achieved expert-level accuracy, enabling fully automated quantification. However, challenges remain in generalizability across scanners and centers, robustness to artifacts, model interpretability, and integration into clinical workflows. This review addresses these gaps by systematically evaluating state-of-the-art methods, highlighting advances in deep and hybrid models, public benchmarks, and emerging solutions such as explainable AI and federated learning. The study underscores the necessity of this work to bridge the gap between research innovation and real-world clinical deployment, ensuring safe, trustworthy, and scalable AI-powered CMR analysis.
لیست مقالات
لیست مقالات بایگانی شده
عوامل موثر بر یکپارچه سازی سیستم مالی شرکت ها: مرور و تحلیل مبانی نظری و ادبیات علمی
محمدرضا مهربان پور - سپیده رهبر
کاربرد هوش مصنوعی در حملات سایبری: یک مرور تحلیل
سجاد یوسفی - مریم پورنجف - رویا شیخی زاده - زینب بازپور
بررسی نقش شفافیت اطلاعات مالی و حسابرسی مالیاتی در بهبود تمکین مالیاتی و تأثیر آن بر رشد اقتصادی پایدار
الهه آقاخانی - مرتضی خانلاری
تهدیدهای حریم خصوصی در شهرهای هوشمند
محمد امیری نسب - محمد عادلی نیا
Classification of Excitatory and Inhibitory Neurons in Animal Data Using Machine Learning and CNN Models
Mahdi Mollaei - Amirhossein Mashghdoust - Ali Khadem
بررسی تأثیر ارائه صورت تغییرات حقوق مالکانه بر کیفیت اطلاعات حسابداری
سید علی میرنژاد - جمال برزگری خانقاه - فاطمه زه تابیان یزدی
نقش هوش مصنوعی در بازاریابی صنعتی B2B
علی نظیری فیروز سالاری - زهرا کریمی فرنور
Goniometry and Electromyography Data Analysis for Knee Health Diagnosis using Machine Learning
Mohammad-Reza Sayyed Noorani - Zahra Mahmoudi Anzabi - Sara Sharifi
Document Clustering Using Deep Pre-trained Language Model Embeddings for Information Retrieval
Mahdi Mohammadiha - Mohammad Hassan Sadreddini - Morteza Mohammadi Zanjireh
بررسی تاثیر حسابداری منابع انسانی بر عملکرد رقابتی استراتژیک شرکتهای کوچک و متوسط استان گیلان
ائلناز سیادتی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1