0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
EEG-Based Classification of Schizophrenia and Healthy Controls Subjects Using Statistical and Nonlinear Features with Emphasis on Fuzzy Entropy
نویسندگان :
Mahdiyeh Tofighi Milani
1
Sina Shamekhi
2
Asghar Zarei
3
1- دانشگاه صنعتی تبریز(سهند)
2- دانشگاه صنعتی تبریز(سهند)
3- دانشگاه صنعتی تبریز(سهند)
کلمات کلیدی :
Schizophrenia،Electroencephalogram،Machine Learning،Fuzzy Entropy
چکیده :
Schizophrenia is a severe mental disorder that frequently causes the patient to have numerous problems with normal daily activities, and still, doctors struggle to accurately diagnose it in the early stages. Brain imaging and clinical tests, even if they are sometimes capable of achieving the goal, are often a lengthy procedure, expensive, and can also be somewhat uncomfortable for patients. New scientific work seeks to come up with a less intrusive and cheaper method, which will include the use of the EEG signal and the ML algorithm in identifying abnormalities of the schizophrenic patients as compared with the healthy ones. At first, the Fast Fourier Transform (FFT) was used to decompose the EEG signal into multiple sub-bands of frequency, and it was decided to extract a set of features from each sub-band, where the features included the statistical and nonlinear features - kurtosis, skewness, Shannon entropy, fuzzy entropy, mobility, and complexity. Subsequently, the ReliefF algorithm was utilized for the selection of features, and the significant features thus extracted were used as input for a number of classifiers, including the k-nearest neighbors (KNN), linear support vector machine (SVM), and the random forest (RF), to name but a few. The functional capabilities of the designed system were verified on a genuine EEG dataset that contains recorded signals from teenage schizophrenia patients as well as from healthy subjects. Random forest was identified as the most effective one among the various implemented classifiers, as it achieved the highest performance with an average accuracy of 97.69%. Also, fuzzy entropy was identified to be a constantly discriminative feature, implying it could serve as a sound biomarker for the differentiation of schizophrenia from healthy subjects by utilizing EEG signals.
لیست مقالات
لیست مقالات بایگانی شده
Leveraging Online Data to Enhance Medical Knowledge in a Small Persian Language Model
Mehrdad Ghassabi - Pedram Rostami - Hamidreza Baradaran kashani - Amirhossein Poursina - Zahra Kazemi - Milad Tavakoli
حکمرانی داده و هوش مصنوعی در اقتصاد دیجیتال: چالش ها، چارچوب ها و الزامات اخلاقی
علیرضا فولاد - ابوالفضل حسین زاده - علی عبدلی
Brain Network Reconfiguration During Creative Playmaking: A Task-fMRI Study
Mohammd Rezaei - Mahdi Siami - Asghar Zarei - Alireza Talesh Jafadideh
چگونگی تاثیر هوش مصنوعی بر موقعیت رقابتی سازمان های بهداشت و درمان
مهدی زینالی - نیما قاسم زاده شهرک
بهبود عملکرد سیستمهای شناسایی بدافزار با تلفیق شبکههای عصبی کانولوشن و الگوریتم جنگل تصادفی
بهزاد شاه پسندی - مجید مزینانی
Vibration-Based Assessment of Dental Implants: A Finite Element Study on Bone Quality and Boundary Conditions
Fatima Wayzani - Mohammadjavad (Matin) Einafshar - Ata Hashemi
Design and Development of A Focal Vibrating Massager with Wide Frequency Range and Real-Time Control
Ali Bakhshian Talkhoncheh - Mohammad Yousefi - Saeid Niknami - Borhan Beigzadeh
بررسی رابطه بین کیفیت حسابرسی، تأمین مالی بدهی و مدیریت سود در مراحل مختلف چرخه عمر شرکتها
محدرضا پژوهی
نقش هوش مصنوعی در شخصیسازی تجربه مشتری: بررسی رفتار مصرفکننده در فروشگاههای آنلاین
بهزاد بالازاده - حسین بوداقی - نازلی قراچورلو
جایگاه هوش مصنوعی در آینده اقتصاد ایران
سید کمال صادقی - فاطمه نمازی - هانیه پور مهدی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2