0% Complete
English
صفحه اصلی
/
سی و دومین کنفرانس ملی و دهمین کنفرانس بین المللی مهندسی زیست پزشکی ایران
EEG-Based Classification of Schizophrenia and Healthy Controls Subjects Using Statistical and Nonlinear Features with Emphasis on Fuzzy Entropy
نویسندگان :
Mahdiyeh Tofighi Milani
1
Sina Shamekhi
2
Asghar Zarei
3
1- دانشگاه صنعتی تبریز(سهند)
2- دانشگاه صنعتی تبریز(سهند)
3- دانشگاه صنعتی تبریز(سهند)
کلمات کلیدی :
Schizophrenia،Electroencephalogram،Machine Learning،Fuzzy Entropy
چکیده :
Schizophrenia is a severe mental disorder that frequently causes the patient to have numerous problems with normal daily activities, and still, doctors struggle to accurately diagnose it in the early stages. Brain imaging and clinical tests, even if they are sometimes capable of achieving the goal, are often a lengthy procedure, expensive, and can also be somewhat uncomfortable for patients. New scientific work seeks to come up with a less intrusive and cheaper method, which will include the use of the EEG signal and the ML algorithm in identifying abnormalities of the schizophrenic patients as compared with the healthy ones. At first, the Fast Fourier Transform (FFT) was used to decompose the EEG signal into multiple sub-bands of frequency, and it was decided to extract a set of features from each sub-band, where the features included the statistical and nonlinear features - kurtosis, skewness, Shannon entropy, fuzzy entropy, mobility, and complexity. Subsequently, the ReliefF algorithm was utilized for the selection of features, and the significant features thus extracted were used as input for a number of classifiers, including the k-nearest neighbors (KNN), linear support vector machine (SVM), and the random forest (RF), to name but a few. The functional capabilities of the designed system were verified on a genuine EEG dataset that contains recorded signals from teenage schizophrenia patients as well as from healthy subjects. Random forest was identified as the most effective one among the various implemented classifiers, as it achieved the highest performance with an average accuracy of 97.69%. Also, fuzzy entropy was identified to be a constantly discriminative feature, implying it could serve as a sound biomarker for the differentiation of schizophrenia from healthy subjects by utilizing EEG signals.
لیست مقالات
لیست مقالات بایگانی شده
ساخت داربست پلییورتان گرمانرم-هیدروکسی آپاتیت-اکسید گرافن احیا شده و بررسی رفتار زیستتخریبپذیری و زیستسازگاری آن
سید امیررضا زارعیان - سید مجتبی زبرجد
OpenSim Musculoskeletal Modeling Framework for sEMG-Based Knee Torque Estimation
Mohammad-Reza Sayyed Noorani - Mariya A. Vaziry - Seyed Alireza MirTajeddini
نقش هوش مصنوعی و اینترنت اشیاء در زنجیره تامین در صنعت آب و فاضلاب
محمد ناصرین - حمیدرضا رضوانی - افسانه نیک محمدی
بررسی تاثیر اجتناب مالیاتی بر اهرم مالی و جریان نقدی
صفیه سلیمان نژاد - امید پایدار خیابانی - احمد شاهی - محمد هاشم نژاد سراجه لو
Enhancing Dental Disease Detection: Leveraging Swin Transformer and DenseNet with Attention-Guided Fusion in Dental Panoramic Imaging
Mahdieh Dehghani - Reza Aghaeizadeh Zoroofi
Electrospun Chitosan-Gelatin/ZIF‑8 Nanofibers Scaffolds for Enhanced Wound Healing
Maryam Nosrati hashi - Maryam Tajabadi - Fateme Mirzajani - Alireza Khavandi
رابطه سه وجهی بازده اوراق خزانه، نرخ ارز و شاخص بورس در صنایع مختلف
پوریا کاظمی بختوری - سپیده محمودی وایقان - بهزاد محمودی وایقان
تاثیر مسئولیت اجتماعی شرکت ها بر شهرت برند و ارزش ویژه برند (نمونه موردی گالری چرم امینی)
لیلا امینی راد
بهبود امنیت شبکههای رایانش ابری مبتنی بر معماری OpenFlow با استفاده از SVM
سویل قنبرزاده چاوشی
تاثیر هوش مصنوعی بر توسعه اقتصاد حسابداری
نیما قاسم زاده شهرک - سعید انورخطیبی - سلمان عبدی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.4.1